Research modern control and optimization technologies to help industry and society control and optimize their processes.

The main mission of the research unit DYSCO (Dynamical Systems, Control, and Optimization) is to develop new methodologies for the design of advanced multivariable controls that make systems react autonomously and optimally. Research revolves around model predictive control of dynamical systems, with specific emphasis on developing new algorithms for real-time convex embedded optimization, system identification and machine learning.

Besides focusing on algorithms and understanding their theoretical properties, research results are constantly applied to real-life problems of industrial, economic, and societal interest, such as in the automotive, aerospace, energy, process control, and financial industries.

DYSCO is part of the research area in Computer Science and Engineering at the IMT Institute for Advanced Studies Lucca, Italy.


Director Researchers PhD Students
  • Valentina Breschi - Ph.D. Student
  • Gionata Cimini - Visiting Ph.D. Student
  • Mogens Graf Plessen - Ph.D. Student
  • Alberto Guiggiani - Ph.D. Student
  • Puya Latafat - Ph.D. Student
  • Rodrigo Lopez Farìas - Ph.D. Student
  • Manas Dilip Mejari - Ph.D. Student
  • Rita Morisi - Ph.D Student
  • Vihangkumar Vinaykumar Naik - PhD Student
  • Carlo Alberto Pascucci - Ph.D. Student
  • Ajay Sampathirao - Ph.D. Student
  • Lorenzo Stella - Ph.D. Student
  • Andreas Themelis - Ph.D Student

Research topics

Model Predictive Control (MPC)
Model Predictive Control (MPC) is widely adopted in industry for real-time control of large multivariable processes to optimize process operations under the best use of limited resources. The main idea of MPC is to choose the control action by solving an optimal control problem on line that minimizes a performance criterion over a future horizon, subject to constraints on process variables. The research unit investigates several issues in MPC, such as: stochastic MPC for constrained linear systems, decentralized and hierarchical MPC for spatially-distributed large-scale systems, MPC of networked systems based on wireless sensor feedback, explicit MPC and multiparametric programming for linear, hybrid, uncertain, and quantized systems.

Model predictive control

Numerical optimization Numerical Optimization algorithms for solving convex smooth and non-smooth mathematical programming problems, related to embedded MPC systems and to a large variety of areas, such as machine learning, various branches of engineering, and economics.

Hybrid systems
The hybrid models investigated by DYSCO are based on mixed-integer models for describing systems composed of both continuous and discrete dynamic components. Research investigations in hybrid systems include: modeling, model predictive control, verification and reachability analysis, observability analysis, fault detection and state estimation, scheduling and optimal control, stochastic hybrid systems, event-based hybrid systems, identification of hybrid models.

Systems Identification and Machine Learning approaches are investigated to learn dynamical models from data, with emphasis on linear parameter varying and nonlinear models.

Software Tools

MATLAB toolboxes for real-time dynamic optimization based on linear/quadratic and mixed-integer models were developed by the research unit:


Automotive control systems
Traction control, direct-injection engines, semi-active suspensions, electromagnetic actuators, adaptive cruise control, robotized gearboxes, air-to-fuel ratio, active steering, idle speed, power management and thermal management in hybrid electrical vehicles.

Automotive control

Aerospace control
Satellite attitude control, control of sloshing, guidance, navigation and control unmanned aerial vehicles (including formation flying and rendezvous), control of powered descent.

Industrial process control
Control of gas turbines, gas supply systems, flatness in cold tandem rolling, solar plants, cement mill scheduling.

Energy, management, and finance
Optimal bidding on energy markets, optimal power dispatch in smart grids, management of water distribution networks and sewer networks, dynamic hedging of financial options, optimal issuance of public debt securities.


The research unit collaborates with several European and American companies in applied research projects. The unit also has scientific collaborations with several universities worldwide.


European Commission
H2020: Project DISIRE - Integrated Process Control based on Distributed In-Situ Sensors into Raw Material and Energy
FP7: Project EFFINET - Efficient Integrated Real-time Monitoring and Control of Drinking Water Networks
FP7: Network of Excellence HYCON2 - Highly complex networked control systems
FP7: Project E-PRICE - Price-based Control of Electrical Power Systems
FP7: Project MOBY-DIC - Model-based synthesis of digital electronic circuits for embedded control
FP7: Project WIDE - Decentralized and Wireless Control of Large-scale Systems (Coord.: A. Bemporad)
FP6: Network of Excellence HYCON - Hybrid Control
FP5: Project CC - Control and Computation
FP5: Marie Curie Control Training Site grants to host foreign researchers
FP4: Project VHS - Verification of Hybrid Systems

European Agencies
EU Space Agency: ORCSAT - On-line reconfiguration control system and avionics technologies
EU Space Agency: ROBMPC - Robust MPC for space constrained systems
European Defence Agency: Project NICE - Nonlinear innovative control designs and evaluations

National funding (Italian Ministry of Education, University and Research)
Advanced methodologies for control of hybrid systems (2006-2007)
Models for optimization, control, and coordination of distributed supply chains (2004-2005)
FIRB project Simulation methods for public debt management (2005-2007)

The unit regularly receives industrial funding to carry out applied research projects.


Spinoff company

Founded in 2011 as the first spinoff of IMT, ODYS S.r.l. is an independent startup company specialized in providing consultancy services and software packages for the industrial development of model predictive control systems. ODYS' clients include major American and European automotive and aerospace companies.