
Cloud-aided collaborative estimation by ADMM-RLS
algorithms for connected vehicle prognostics

Technical Report TR-2017-01

Valentina Breschi, Ilya Kolmanovsky, Alberto Bemporad

September 22, 2017

Abstract

As the connectivity of consumer devices is rapidly growing and cloud
computing technologies are becoming more widespread, cloud-aided tech-
niques for parameter estimation can be designed to exploit the theoreti-
cally unlimited storage memory and computational power of the “cloud”,
while relying on information provided by multiple sources.
With the ultimate goal of developing monitoring and diagnostic strate-
gies, this report focuses on the design of a Recursive Least-Squares (RLS)
based estimator for identification over a group of devices connected to the
“cloud”. The proposed approach, that relies on Node-to-Cloud-to-Node
(N2C2N) transmissions, is designed so that: (i) estimates of the unknown
parameters are computed locally and (ii) the local estimates are refined
on the cloud. The proposed approach requires minimal changes to local
(pre-existing) RLS estimators.

1 Introduction

With the increasing connectivity between devices, the interest in distributed so-
lutions for estimation [24], control [10] and machine learning [9] has been rapidly
growing. In particular, the problem of parameter estimation over networks has
been extensively studied, especially in the context of Wireless Sensor Networks
(WSNs). The methods designed to solve this identification problem can be di-
vided into three groups: incremental approaches [18], diffusion approaches [5]
and consensus-based distributed strategies [20]. Due to the low communica-
tion power of the nodes in WSNs, research has mainly been devoted to obtain
fully distributed approaches, i.e. methods that allow exchanges of information
between neighbor nodes only. Even though such a choice enables to reduce
multi-hop transmissions and improve robustness to node failures, these strate-
gies allows only neighbor nodes to communicate and thus to reach consensus.

∗Valentina Breschi and Alberto Bemporad are with the IMT School for Advanced Studies
Lucca, Piazza San Francesco 19, 55100 Lucca, Italy. valentina.breschi@imtlucca.it;
alberto.bemporad@imtlucca.it
†Ilya Kolmanovsky is with the Department of Aerospace Engineering, University of Michi-

gan, Ann Arbor, MI 48109, USA. ilya@umich.edu
‡The results in the report have been partially presented in a paper submitted to ACC 2018.

1

Communication Layer

Collect information
Broadcast

Global Updates

Global Updates
CLOUD

Local Updates

· · · · · ·· · · · · ·

Figure 1: Cloud-connected vehicles.

As a consequence, to attain consensus on the overall network, its topology has
to be chosen to enable exchanges of information between the different groups of
neighbor nodes.
At the same time, with recent advances in cloud computing [22] it has now
become possible to acquire and release resources with minimum effort so that
each node can have on-demand access to shared resources, theoretically charac-
terized by unlimited storage space and computational power. This motivates to
reconsider the approach towards a more centralized strategy where some com-
putations are performed at the node level, while the most time and memory
consuming ones are executed “on the cloud”. This requires the communication
between the nodes and a fusion center, i.e. the “cloud”, where the data gathered
from the nodes are properly merged.
Cloud computing has been considered for automotive vehicle applications in [13]-
[14] and [25]. As motivating example for another possible automotive applica-
tion, consider a vehicle fleet with vehicles connected to the “cloud” (see Fig-
ure 1). In such a setting, measurements taken on-board of the vehicles can
be used for cloud-based diagnostics and prognostics purposes. In particular,
the measurements can be used to estimate parameters that may be common
to all vehicles, such as parameters in components wear models or fuel con-
sumption models, and parameters that may be specific to individual vehicles.
References [32] and [12] suggest potential applications of such approaches for
prognostics of automotive fuel pumps and brake pads. Specifically, the compo-
nent wear rate as a function of the workload (cumulative fuel flow or energy
dissipated in the brakes) can be common to all vehicles or at least to all vehicles
in the same class.
A related distributed diagnostic technique has been proposed in [3]. However it
relies on a fully-distributed scheme, introduced to reduce long distance trans-
missions and to avoid the presence of a “critic” node in the network, i.e. a node

2

whose failure causes the entire diagnostic strategy to fail.

In this report a centralized approach for recursive estimation of parameters
in the least-squares sense is presented. The method has been designed under
the hypothesis of (i) ideal transmission, i.e. the information exchanged between
the cloud and the nodes is not corrupted by noise, and the assumption that (ii)
all the nodes are described by the same model, which is supposed to be known
a priori. Differently from what is done in many distributed estimation meth-
ods (e.g. see [20]), where the nodes estimate common unknown parameters, the
strategy we propose allows to account for more general consensus constraint. As
a consequence, for example, the method can be applied to problems where only
a subset of the unknowns is common to all the nodes, while other parameters
are purely local, i.e. they are different for each node.
Our estimation approach is based on defining a separable optimization problem
which is then solved through the Alternating Direction Method of Multipliers
(ADMM), similarly to what has been done in [20] but in a somewhat different
setting. As shown in [20], the use of ADMM leads to the introduction of two
time scales based on which the computations have to be performed. In partic-
ular, the local time scale is determined by the nodes’ clocks, while the cloud
time scale depends on the characteristics of the resources available in the center
of fusion and on the selected stopping criteria, used to terminate the ADMM
iterations.
The estimation problem is thus solved through a two-step strategy. In particu-
lar: (i) local estimates are recursively retrieved by each node using the measure-
ments acquired from the sensors available locally; (ii) global computations are
performed to refine the local estimates, which are supposed to be transmitted to
the cloud by each node. Note that, based on the aforementioned characteristics,
back and forth transmissions to the cloud are required. A transmission scheme
referred to as Node-to-Cloud-to-Node (N2C2N) is thus employed.
The main features of the proposed strategies are: (i) the use of recursive formu-
las to update the local estimates of the unknown parameters; (ii) the possibility
to account for the presence of both purely local and global parameters, that can
be estimated in parallel; (iii) the straightforward integration of the proposed
techniques with pre-existing Recursive Least-Squares (RLS) estimators already
running on board of the nodes.

The report is organized as follows. In Section 2 ADMM is introduced, while
in Section 3 is devoted to the statement of the considered problem. The ap-
proach for collaborative estimation with full consensus is presented in Section 4,
along with the results of simulation examples that show the effectiveness of the
approach and its performance in different scenarios. In Section 5 and Section 6
the methods for collaborative estimation with partial consensus and for con-
strained collaborative estimation with partial consensus are described, respec-
tively. Results of simulation examples are also reported. Concluding remarks
and directions for future research are summarized in Section 7.

1.1 Notation

Let Rn be the set of real vectors of dimension n and R+ be the set of positive
real number, excluding zero. Given a set A, let Ă be the complement of A.

3

Given a vector a ∈ Rn, ‖a‖2 is the Euclidean norm of a. Given a matrix
A ∈ Rn×p, A′ denotes the transpose of A. Given a set A, let PA denote the
Euclidean projection onto A. Let In be the identity matrix of size n and 0n be
an n-dimensional column vector of ones.

2 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) [4] is an algorithm
tailored for problems in the form

minimize f(θ)+

subject to Aθ +Bz = c,
(1)

where θ ∈ Rnθ , z ∈ Rnz , f : Rnθ → R ∪ {+∞} and g : Rnz → R ∪ {+∞} are
closed, proper, convex functions and A ∈ Rp×nθ , B ∈ Rp×nz , c ∈ Rp.

To solve Problem (1), the ADMM iterations to be performed are

θ(k+1) = argmin
θ

L(θ, z(k), δ(k)), (2)

z(k+1) = argmin
z

L(θ(k+1), z, δ(k)), (3)

δ(k+1) = δ(k) + ρ(Aθ(k+1) +Bz(k+1) − c), (4)

where k ∈ N indicates the ADMM iteration, L is the augmented Lagrangian
associated to (1), i.e.

L(θ, z, δ) = f(θ) + g(z) + δ′ (Aθ +Bz − c) +
ρ

2
‖Aθ +Bz − c‖22 , (5)

δ ∈ Rp is the Lagrange multiplier and ρ ∈ R+ is a tunable parameter (see [4]
for possible tuning strategies). Iterations (2)-(4) have to be run until a stopping
criteria is satisfied, e.g. the maximum number of iterations is attained.

It has to be remarked that the convergence of ADMM to high accuracy
results might be slow (see [4] and references therein). However, the results
obtained with a few tens of iterations are usually accurate enough for most of
applications. For further details, the reader is referred to [4].

2.1 ADMM for constrained convex optimization

Suppose that the problem to be addressed is

min
θ

f(θ)

s.t. θ ∈ C,
(6)

with θ ∈ Rnθ , f : Rnθ → R∪{+∞} being a closed, proper, convex function and
C being a convex set, representing constraints on the parameter value.
As explained in [4], (6) can be recast in the same form as (1) through the

4

introduction of the auxiliary variable z ∈ Rnθ and the indicator function of set
C, i.e.

g(z) =

{
0 if z ∈ C
+∞ otherwise

. (7)

In particular, (6) can be equivalently stated as

min
θ,z

f(θ) + g(z)

s.t. θ − z = 0.
(8)

Then, the ADMM scheme to solve (8) is

θ(k+1) = argmin
θ

L(θ, z(k), δ(k)), (9)

z(k+1) = PC(θ(k+1) + δ(k)), (10)

δ(k+1) = δ(k) + ρ(θ(k+1) − z(k+1)) (11)

with L equal to

L(θ, z, δ) = f(θ) + g(z) + δ′(θ − z) +
ρ

2
‖θ − z‖22

2.2 ADMM for consensus problems

Consider the optimization problem given by

min
θg

N∑
n=1

fn(θg), (12)

where θg ∈ Rnθ and each term of the objective, i.e. fn : Rnθ → R ∪ {+∞}, is a
proper, closed, convex function.
Suppose that N processors are available to solve (12) and that, consequently,
we are not interested in a centralized solution of the consensus problem. As
explained in [4], ADMM can be used to reformulate the problem so that each
term of the cost function in (12) is handled by its own.
In particular, (12) can be reformulated as

minimize

N∑
n=1

fn(θn)

subject to θn − θg = 0 n = 1, . . . , N.

(13)

Note that, thanks to the introduction of the consensus constraint, the cost
function in (13) is now separable.
The augmented Lagrangian correspondent to (13) is given by

L({θn}Nn=1, θ
g, {δn}Nn=1) =

N∑
n=1

(
fn(θn) + δ′n(θn − θg) +

ρ

2
‖θn − θg‖22

)
, (14)

5

and the ADMM iterations are

θ(k+1)
n = argmin

θn

Ln(θn, δ
(k)
n , θg,(k)), n = 1, . . . , N (15)

θg,(k+1) =
1

N

N∑
n=1

(
θ(k+1)
n +

1

ρ
δ(k)n

)
, (16)

δ(k+1)
n = δ(k)n + ρ

(
θ(k+1)
n − θg,(k+1)

)
, n = 1, . . . , N (17)

with
Ln = fn(θn) + (δn)′(θn − θg) +

ρ

2
‖θn − θg‖22.

Note that, on the one hand (15) and (17) can be carried out independently by
each agent n ∈ {1, . . . , N}, (16) depends on all the updated local estimates.
The global estimate should thus be updated in a “fusion center”, where all the
local estimates are collected and merged.

3 Problem statement

Assume that (i) measurements acquired by N agents are available and that
(ii) the behavior of the N data-generating systems is described by the same
known model. Suppose that some parameters of the model, θn ∈ Rnθ with
n = 1, . . . , N , are unknown and that their value has to to be retrieved from
data. As the agents share the same model, it is also legitimate to assume that
(iii) there exist a set of parameters θg ∈ Rng , with ng ≤ nθ, common to all the
agents.

We aim at (i) retrieving local estimates of {θn}Nn=1, employing information
available at the local level only, and (ii) identifying the global parameter θg at
the “cloud” level, using the data collected from all the available sources. To
accomplish these tasks (i) N local processors and (ii) and a “cloud”, where the
data are merged are needed.

The considered estimation problem can be cast into a separable optimization
problem, given by

min
θn

N∑
n=1

fn(θn)

s.t. F (θn) = θg,

θn ∈ Cn, n = 1, . . . , N

(18)

where fn : Rnθ → R∪{+∞} is a closed, proper, convex function, F : Rnθ → Rng
is a nonlinear operator and Cn ⊂ Rnθ is a convex set representing constraints
on the parameter values. Note that, constraints on the value of the global pa-
rameter can be enforced if Cn = C ∪ {Cn ∩ C̆}, with θ ∈ C.
Assume that the available data are the output/regressor pairs collected from
each agent n ∈ {1, . . . , N} over an horizon of length T ∈ N, i.e. {yn(t), Xn(t)}Tt=1.
Relying on the hypothesis that the regressor/output relationship is well mod-
elled as

yn(t) = Xn(t)′θn + en(t), (19)

6

with en(t) ∈ Rny being a zero-mean additive noise independent of the regressor
Xn(t) ∈ Rnθ×ny , we will focus on developing a recursive algorithm to solve (18)
with the local cost functions given by

fn(θn) =
1

2

T∑
t=1

λT−tn ‖yn(t)−Xn(t)′θn‖
2
2 . (20)

The forgetting factor λn ∈ (0, 1] is introduced to be able to estimate time-
varying parameters. Note that different forgetting factors can be chosen for
different agents.

Remark 1 ARX models
Suppose that an AutoRegressive model with eXogenous inputs (ARX) has to be
identified from data. The input/output relationship is thus given by

y(t) = θ1y(t− 1) + . . .+ θnay(t− na)+

+ θna+1u(t− nk − 1) + . . .+ θna+nbu(t− nk − nb) + e(t) (21)

where u is the deterministic input, {na, nb} indicate the order of the system, nk
is the input/output delay.
Note that (21) can be recast as the output/regressor relationship with the regres-
sor defined as

X(t) =
[
y(t− 1)′ . . . y′(t− na) u(t− nk − 1)′ . . . u(t− nk − nb)′

]′
(22)

It is worth to point out that, in the considered framework, the parameters na, nb
and nk are the same for all the N agents, as they are supposed to be described
by the same model. �

4 Collaborative estimation for full consensus

Suppose that the problem to be solve is (12), i.e. we are aiming at achieving
full consensus among N agents. Consequently, the consensus constraint in (18)
has to be modified as

F (θn) = θg → θn = θg

and Cn = Rnθ , so that θn ∈ Cn can be neglected for n = 1, . . . , N . Moreover,
as we are focusing on the problem of collaborative least-squares estimation, we
are interested in the particular case in which the local cost functions in (13) are
equal to (20) .

Even if the considered problem can be solved in a centralized fashion, our
goal is to obtain estimates of the unknown parameters both (i) at a local level
and (ii) on the “cloud”. With the objective of distributing the computation
among the local processors and the “cloud”, we propose 5 approaches to address
(13).

4.1 Greedy approaches

All the proposed ‘greedy’ approaches rely on the use, by each local processor,
of the standard Recursive Least-Squares (RLS) method (see [17]) to update the

7

#1 · · · #N

CLOUD

{θ̂1(0), φ1(0)} {θ̂N (0), φN (0)}

θ̂1(t)
or

{θ̂1(t), φ1(t)}

θ̂N (t)
or

{θ̂N (t), φN (t)}

θ̂g

(a) S-RLS and SW-RLS

#1 · · · #N

CLOUD

φ1(0)

θ̂go

φN (0)

θ̂1(t)
or

{θ̂1(t), φ1(t)}

θ̂N (t)
or

{θ̂N (t), φN (t)} θ̂gθ̂g

θ̂g

(b) M-RLS and MW-RLS

Figure 2: Greedy approaches. Schematic of the information exchanges between
the agents and the “cloud”.

local estimates, {θ̂n}Nn=1. Depending on the approach, {θ̂n}Nn=1 are then com-
bined on the “cloud” to update the estimate of the global parameter.

The first two methods that are used to compute the estimates of the unknown
parameters both (i) locally and (ii) on the “cloud” are:

1. Static RLS (S-RLS) The estimate of the global parameter is computed
as

θ̂g =
1

N

N∑
n=1

θ̂n(t). (23)

2. Static Weighted RLS (SW-RLS) Consider the matrices {φn}Nn=1,
obtained applying standard RLS at each node (see [17]), and assume

that {φn}Nn=1 are always invertible. The estimate θ̂g is computed as the
weighted average of the local estimates

θ̂g =

(
N∑
n=1

φn(t)−1

)−1(N∑
n=1

φn(t)−1θ̂n(t)

)
. (24)

Considering that φn is an indicator of the accuracy of the nth local es-
timate, (24) allows to weight more the “accurate ” estimates then the
“inaccurate” ones.

S-RLS and SW-RLS allow to achieve our goal, i.e. (i) obtain a local estimate of

the unknowns and (ii) compute θ̂g using all the information available. However,
looking at the scheme in Figure 2(a) and at Algorithm 1, it can be noticed that
the global estimate is not used at a local level.
Thanks to the dependence of θ̂g on all the available information, the local use

of the global estimate might enhance the accuracy of {θ̂n}Nn=1. Motivated by
this observation, we introduce two additional methods:

4. Mixed RLS (M-RLS)

8

Algorithm 1 S-RLS and SW-RLS

Input: Sequence of observations {Xn(t), yn(t)}Tt=1, initial matrices φn(0) ∈
Rnθ×nθ , initial estimates θ̂n(0) ∈ Rnθ , n = 1, . . . , N

1. for t = 1, . . . , T do

Local

1.1. for n = 1, . . . , N do

1.1.1. compute Kn(t), φn(t) and θ̂n(t) with standard RLS [17];

1.2. end for;

Global

1.1. compute θ̂g;

2. end.

Output: Local estimates {θ̂n(t)}Tt=1, n = 1, . . . , N , estimated global parame-

ters {θ̂g(t)}Tt=1.

Algorithm 2 M-RLS and MW-RLS

Input: Sequence of observations {Xn(t), yn(t)}Tt=1, initial matrices φn(0) ∈
Rnθ×nθ , n = 1, . . . , N , initial estimate θ̂go .

1. for t = 1, . . . , T do

Local

1.1. for n = 1, . . . , N do

1.1.1. set θ̂n(t− 1) = θ̂g(t− 1);

1.1.2. compute Kn(t), φn(t) and θ̂n(t) with standard RLS [17];

1.2. end for;

Global

1.1. compute θ̂g;

2. end.

Output: Local estimates {θ̂n(t)}Tt=1, n = 1, . . . , N , estimated global parame-

ters {θ̂g(t)}Tt=1.

5. Mixed Weighted RLS (MW-RLS)

While M-RLS relies on (23), in MW-RLS the local estimates are combined as in
(24). However, as shown in Figure 2(b) and outlined in Algorithm 2, the global

estimate θ̂g is fed to the each local processor and used to update the local
estimates instead of their values at the previous step. Note that, especially at
the beginning of the estimation horizon, the approximation made in M-RLS
and MW-RLS might affect negatively some of the local estimates, e.g. the ones
obtained by the agents characterized by a relatively small level of noise.

9

Remark 2 While S-RLS and M-RLS require the local processors to transmit
to the “cloud” only {θ̂n}Nn=1, the pairs {θ̂n, φn}Nn=1 have to be communicated to
the “cloud” with both SW-RLS and MW-RLS (see (23) and (24), respectively).
Moreover, as shown in Figure 2, while S-RLS and SW-RLS require Node-to-
Cloud-to-Node (N2C2N) transmissions, M-RLS and MW-RLS are based on a
Node-to-Cloud (N2C) communication policy. �

4.2 ADMM-based RLS (ADMM-RLS) for full consensus

Instead of resorting to greedy methods, we propose to solve (12) with ADMM.
Note that the same approach has been used to develop a fully distributed scheme
for consensus-based estimation over Wireless Sensor Networks (WSNs) in [20].
However, our approach differs from the one introduced in [20] as we aim at
exploiting the “cloud” to attain consensus and, at the same time, we want local
estimates to be computed by each node.
As the problem to be solved is equal to (13), the ADMM iterations to be per-
formed are (15)-(17), i.e.

θ̂n(T)(k+1) = argmin
θn

{
fn(θn) + (δ(k)n)′(θn − θ̂g,(k)) +

ρ

2
‖θn − θ̂g,(k)‖22

}
,

θ̂g,(k+1) =
1

N

N∑
n=1

(
θ(k+1)
n +

1

ρ
δ(k)n

)
,

δ(k+1)
n = δ(k)n + ρ

(
θ̂(k+1)
n (T)− θ̂g,(k+1)

)
, n = 1, . . . , N

with the cost functions fn defined as in (14) and where the dependence on T

of the local estimates is stressed to underline that only the updates of θ̂n are
directly influenced by the current measurements. Note that the update for θ̂g

is a combination of the mean of the local estimates, i.e. (23), and the mean of
the Lagrange multipliers.
As (16)-(17) are independent from the specific choice of fn(θn), we focus on
the update of the local estimates, i.e. (15), with the ultimate goal of finding

recursive updates for θ̂n.

Thanks to the characteristics of the chosen local cost functions, the closed-
form solution for the problem in (15) is given by

θ̂(k+1)
n (T) = φn(T)

(
Yn(T)− δ(k)n + ρθ̂g,(k)

)
, (25)

Yn(t) =

t∑
τ=1

λt−τn Xn(τ)yn(τ), t = 1, . . . , T, (26)

φn(t) =

(
t∑

τ=1

λt−τn Xn(τ)(Xn(τ))′ + ρInθ

)−1
, t = 1, . . . , T. (27)

With the aim of obtaining recursive formulas to update θ̂n, consider the local
estimate obtained at T − 1, which is given by

θ̂n(T − 1) = φn(T − 1)
(
Yn(T − 1) + ρθ̂g(T − 1)− δn(T − 1)

)
, (28)

10

with δn(T−1) and θ̂g(T−1) denoting the Lagrange multiplier and the global es-

timate computed at T−1, respectively. It has then to be proven that θ̂
(k)
n (T−1)

can be computed as a function of θ̂(T − 1), yn(T) and Xn(T).

Consider the inverse matrix φn (27), given by

φn(T)−1 = Xn(T) + ρInθ ,

Xn(t) =

t∑
τ=1

λt−τn Xn(τ)(Xn(τ))′.

Based on (27), it can be proven that φn(T)−1 can be computed as a function of
φn(T − 1)−1. In particular:

φn(T)−1 = Xn(T) + ρInθ =

= λnXn(T − 1) +Xn(T)(Xn(T))′ + ρInθ =

= λn [Xn(T − 1) + ρInθ] +Xn(T)(Xn(T))′ + (1− λn)ρInθ =

= λnφn(T − 1)−1 +Xn(T)(Xn(T))′ + (1− λn)ρInθ . (29)

Introducing the extended regressor vector X̃n(T)

X̃n(T) =
[
Xn(T)

√
(1− λn)ρInθ

]
∈ Rnθ×(ny+nθ), (30)

(29) can then be further simplified as

φn(T)−1 = λnφn(T − 1)−1 + X̃n(T)(X̃n(T))′.

Applying the matrix inversion lemma, the resulting recursive formulas to update
φn are

Rn(T) = λnI(ny+nθ) + (X̃n(T))′φn(T − 1)X̃n(T), (31)

Kn(T) = φn(T − 1)X̃n(T)(Rn(T))−1, (32)

φn(T) = λ−1n

(
Inθ −Kn(T)(X̃n(T))′

)
φn(T − 1). (33)

Note that the gain Kn and matrix φn are updated as in standard RLS (see [17]),
with the exceptions of the increased dimension of the identity matrix in (31)
and the substitution of the regressor with X̃n. Only when λn = 1 the regressor
Xn and X̃n are equal. Moreover, observe that (31)-(33) are independent from
k and, consequently, {Rn,Kn, φn}Nn=1 can be updated once fer step t.

Consider again (25). Adding and subtracting

λnφn(T)
[
ρθ̂g(T − 1)− δn(T − 1)

]
to (25), the solution of (15) corresponds to

θ̂(k+1)
n (T) = φn(T)

[
λn

(
Yn(T − 1)− δn(T − 1) + ρθ̂g(T − 1)

)
+

+Xn(T)yn(T)−
(
δ(k)n − λnδn(T − 1)

)
+ ρ

(
θ̂g,(k) − λnθ̂g(T − 1)

)]
=

= θ̂RLSn (T) + θ̂ADMM,(k+1)
n (T), (34)

11

with

θ̂RLSn (T) = φn(T)
{
λn

(
Yn(T − 1) + ρθ̂g(T − 1)− δn(T − 1)

)
+

+Xn(T)yn(T)} , (35)

θ̂ADMM,(k+1)
n (T) = φn(T)

[
ρ∆

(k+1)
g,λn

(T)−∆
(k+1)
λn

(T)
]
, (36)

and

∆k+1
g,λn

(T) = θ̂g,(k) − λnθ̂g(T − 1), (37)

∆
(k+1)
λn

(T) = δ(k)n − λnδn(T − 1). (38)

Observe that (36) is independent from the past data-pairs {yn(t), Xn(t)}Tt=1,
while (35) depends on Yn(T − 1). Aiming at obtaining recursive formulas to

update θ̂n, the dependence of (35) should be eliminated.

Consider (35). Exploiting (33) and (28), θ̂RLSn (T) is given by

θ̂RLSn (T) = φn(T − 1)
{(
Yn(T − 1) + ρθ̂g(T − 1)− δn(T − 1)

)}
+

−Kn(T)(X̃n(T)′)φn(T − 1)
{(
Yn(T − 1) + ρθ̂g(T − 1)− δn(T − 1)

)}
+

+ φn(T)Xn(T)yn(T) =

= θ̂n(T − 1)−Kn(T)(X̃n(T))′θ̂n(T − 1) + φn(T)Xn(T)yn(T). (39)

For (39) to be dependent on the extended regressor only, we define the extended
measurement vector

ỹn(T) =
[
(yn(T))′ 01×ng

]′
.

The introduction of ỹn yields (39) can be modified as

θ̂RLSn (T) = θ̂n(T − 1)−Kn(T)(X̃n(T))′θ̂n(T − 1) + φn(T)X̃n(T)ỹn(T).

Notice that the equality φn(T)X̃n(T) = Kn(T) holds and it can be proven as
follows

φn(T)X̃n(T) = λ−1n

(
Inθ −Kn(T)(X̃n(T))′

)
φn(T − 1)X̃n(T) =

= λ−1n

(
Inθ − φn(T − 1)X̃n(T)(Rn(T))−1(X̃n(T))′

)
φn(T − 1)X̃n(T) =

= φn(T − 1)X̃n(T)
(
λ−1n Inθ − λ−1n (Rn(T))−1(X̃n(T))′φn(T − 1)X̃n(T)

)
=

= φn(T − 1)X̃n(T)
(
λ−1n Inθ+

−λ−1n (λnI(ny+nθ) + (X̃n(T))′φn(T − 1)X̃n(T))−1(X̃n(T))′φn(T − 1)X̃n(T)
)

=

= φn(T − 1)X̃n(T)
(
λ−1n Inθ − λ−1n (I(ny+nθ) + λ−1n (X̃n(T))′φn(T − 1)X̃n(T))−1·

·(X̃n(T))′φn(T − 1)X̃n(T)λ−1n

)
=

= φn(T − 1)X̃n(T)
(
λnInθ + (X̃n(T))′φn(T − 1)X̃n(T)

)−1
= Kn(T),

12

#1 · · · #N

CLOUD

φ1(0)

{θ̂ADMM
n }Nn=1

φN (0)

{θ̂RLS1 (t), φ1(t)} {θ̂RLSN (t), φN (t)}
θ̂N (t)θ̂1(t)

θ̂g, δn, {θ̂n(t)}Nn=1

Figure 3: ADMM-RLS. Schematic of the information exchanges between the
agents and the “cloud”when using a N2C2N communication scheme.

where the matrix inversion lemma and (32)-(33) are used.

It can thus be proven that θ̂RLSn can be updated as

θ̂RLSn (T) = θ̂n(T − 1) +Kn(T)(ỹn(T)− X̃n(T)′θ̂n(T − 1)). (40)

While the update for θ̂ADMM
n (36) depends on both the values of the La-

grange multipliers and the global estimates, θ̂RLSn (40) is computed on the basis
of the previous local estimate and the current measurements. Consequently,
θ̂RLSn is updated recursively.

Under the hypothesis that both θ̂g and δn are stored on the “cloud”, it does
seems legitimate to update θ̂g and δn on the “cloud”, along with θ̂ADMM

n . In-

stead, the partial estimates θ̂RLSn , n = 1, . . . , N , can be updated by the local
processors. Thanks to this choice, the proposed method, summarized in Algo-
rithm 3 and Figure 3, allows to obtain estimates both at the (i) agent and (ii)
“cloud” level.
Observe that, thanks to the independence of (40) from k, θ̂RLSn can be updated
once per step t. The local updates are thus regulated by a local clock and not
by the one controlling the ADMM iterations on the “cloud”.
Looking at (31)-(33) and (40), it can be noticed that θ̂RLSn is updated through
standard RLS, with the exceptions that, at step t ∈ {1, . . . , T}, the update de-

pends on the previous local estimate θ̂n(t−1) instead of depending on θ̂RLSn (t−1)
and that the output/regressor pair {yn(t), Xn(t)} is replaced with {ỹn(t), X̃n(t)}.
As a consequence, the proposed method can be easily integrated with pre-
existing RLS estimators already available locally.

Remark 3 Algorithm 1 requires the initialization of the local and global esti-
mates. If some data are available to be processed in a batch mode, θ̂n(0) can be
chosen as the best linear model, i.e.

θ̂n(0) = argmin
θn

τ∑
t=1

‖yn(t)−Xn(t)′θ‖22

and θ̂g(0) can be computed as the mean of {P θ̂n(0)}Nn=1. Moreover, the matrices
φn, n = 1, . . . , N , can be initialized as φn(0) = γInθ , with γ > 0. �

13

Algorithm 3 ADMM-RLS for full consensus (N2C2N)

Input: Sequence of observations {Xn(t), yn(t)}Tt=1, initial matrices φn(0) ∈
Rnθ×nθ , initial local estimates θ̂n(0), initial dual variables δn,o, n = 1, . . . , N ,

initial global estimate θ̂go , parameter ρ ∈ R+.

1. for t = 1, . . . , T do

Local

1.1. for n = 1, . . . , N do

1.1.1. compute X̃n(t) as in (30);

1.1.2. compute Kn(t) and φn(t) with (32) - (33);

1.1.3. compute θ̂RLSn (t) with (40);

1.2. end for;

Global

1.1. do

1.1.1. compute θ̂
ADMM,(k+1)
n (t) with (36), n = 1, . . . , N ;

1.1.2. compute θ̂g,(k+1)(t) with (16);

1.1.3. compute δ
(k+1)
n with (17), n = 1, . . . , N ;

1.2. until a stopping criteria is satisfied (e.g. maximum number of
iterations attained);

2. end.

Output: Estimated global parameters {θ̂g(t)}Tt=1, estimated local parameters

{θ̂n(t)}Tt=1, n = 1, . . . , N .

Remark 4 The chosen implementation requires θ̂RLSn and φn to be transmitted
from the local processors to the “cloud” at each step, while the “cloud”has to
communicate θ̂n to all the agents. As a consequence, the proposed approach is
based on N2C2N transmissions. �

4.3 Example 1. Static parameters

Suppose that N data-generating systems are described by the following models

yn(t) = 0.9yn(t− 1) + 0.4un(t− 1) + en(t), (41)

where yn(t) ∈ R, Xn(t) = [yn(t−1) un(t−1)]
′
, un is known and is generated in this

example as a sequence of i.i.d. elements uniformly distributed in the interval
[2 3] and en ∼ N (0, Rn) is a white noise sequence, with {Rn ∈ N}Nn=1 randomly
chosen in the interval [1 30]. Evaluating the effect of the noise on the output yn
through the Signal-to-Noise Ratio SNRn, i.e.

SNRn = 10 log

∑T
t=1 (yn(t)− en(t))

2∑T
t=1 en(t)2

dB (42)

14

0 200 400 600 800 1000

0.6

0.8

1

1.2

(a) θg1 vs θ̂g1

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1

1.2

(b) θg2 vs θ̂g2

Figure 4: Example 1. True vs estimated parameters. Black : true, red : C-RLS,
blue : S-RLS, cyan : SW-RLS, magenta : M-RLS, green : MW-RLS.

the chosen covariance matrices yield SNRn ∈ [7.8 20.8] dB, n = 1, . . . , N . Note
that (41) can be equivalently written as

yn(t) = (Xn(t))′θg + en(t) with θg = [0.9 0.4]
′

and the regressor Xn(t) is defined as in (22), i.e. Xn = [yn(t−1) un(t−1)].

Observe that the deterministic input sequences {un(t)}Tt=1 are all different.
However, they are all generated accordingly to the same distribution, as it seems
reasonable to assume that systems described by the same model are character-
ized by similar inputs.

Initializing φn as φn(0) = 0.1Inθ , while θ̂n(0) and θ̂go are sampled from the

distributions N (θ̂g, 2Inθ) and N (θ̂g, Inθ), respectively, and {λn = Λ}Nn=1, with
Λ = 1, we first evaluate the performance of the greedy approaches. The actual
parameter θg and the estimate obtained with the different greedy approaches
are reported in Figure 4.
Despite the slight difference performances in the first 300 steps, which seems

to be legitimate, the estimates obtained with SW-RLS, M-RLS and MW-RLS
are similar. Moreover, θ̂g obtained with the different methods are comparable
with respect with the estimate computed with C-RLS.
In particular, the similarities between the estimates obtained with M-RLS, MW-
RLS and C-RLS prove that, in the considered case, the choice of the “mixed”
strategy allows to enhance the accuracy of θ̂g. Comparing the estimates ob-
tained with S-RLS and SW-RLS, observe that the convergence of the estimate
to the actual value of θg tends to be faster if θ̂g is computed as in (24).

Setting ρ = 0.1, the performance of the ADMM-RLS are assessed for differ-
ent values of N and T . Moreover, the retrieved estimates are compared to the
ones obtained with C-RLS and the greedy approaches.
The accuracy of the estimate θ̂g is assessed through the Root Mean Square Error
(RMSE), i.e.

RMSEgi =

√√√√∑T
t=1

(
θgi − θ̂

g
i (t)

)2
T

, i = 1, . . . , ng. (43)

As expected (see Table 1), the accuracy of the estimates tends to increase if

15

Table 1: ADMM-RLS: ‖RMSEg‖2

N
T

10 102 103 104

2 1.07 0.33 0.16 0.10
10 0.55 0.22 0.09 0.03
102 0.39 0.11 0.03 0.01

Table 2: ‖RMSEg‖2: C-RLS and greedy methods vs ADMM-RLS
Method

C-RLS S-RLS SW-RLS M-RLS MW-RLS ADMM-RLS
‖RMSEg‖2 0.03 0.05 0.03 0.04 0.03 0.03

0 200 400 600 800 1000

0.7

0.8

0.9

1

1.1

1.2

(a) θg1 vs θ̂g1

0 200 400 600 800 1000

-0.1

0

0.1

0.2

(b) |θ̂g1 − θ
g
1 |

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1

(c) θg2 vs θ̂g2

0 200 400 600 800 1000

0

0.2

0.4

0.6

(d) |θ̂g2 − θ
g
2 |

Figure 5: Example 1. Model parameters. Black : true, red : C-RLS, green :
MW-RLS, blue : ADMM-RLS.

the number of local processors N and the estimation horizon T increase. In the
case N = 100 and T = 1000, the estimates obtained with both C-RLS and the
SW-RLS and MW-RLS have comparable accuracy. See Table 2.
The estimates obtained with ADMM-RLS, C-RLS and MW-RLS are further
compared in Figure 5 and, as expected the three estimates are barely distin-
guishable. Thus the proposed ADMM-RLS algorithm, which uses local esti-
mates and the cloud, is able to obtain good accuracy versus the fully centralized
approach. Moreover, ADMM-RLS allows to retrieve estimates as accurate as
the ones obtained with the MW-RLS, i.e. the greedy approach associated with
the least RMSE.

16

Table 3: Example 1. ‖RMSEg‖2 vs Nni
Nni

1 10 20 50
‖RMSEg‖2 0.02 0.02 0.02 0.03

Table 4: Example 1. ‖RMSEg‖2: 20% of non-informative agents
Method

C-RLS S-RLS SW-RLS M-RLS MW-RLS ADMM-RLS
‖RMSEg‖2 0.02 0.03 0.02 0.07 0.03 0.02

0 1000 2000 3000 4000 5000

0.8

1

1.2

1.4

1.6

(a) θg1 vs θ̂g1

0 1000 2000 3000 4000 5000

0.5

1

1.5

(b) θg2 vs θ̂g2

Figure 6: Example 1. Model parameters vs Nni. Black : true, red : Nni = 1,
blue : Nni = 10, cyan : Nni = 20, magenta : Nni = 50.

4.3.1 Non-informative agents

Using the previously introduced initial setting and parameters, lets assume that
some of the available data sources are non-informative, i.e. some systems are
not excited enough to be able to retrieve locally an accurate estimate of all
the unknown parameters [17]. Null input sequences and white noise sequences
characterized by Rn = 10−8 are used to simulate the behavior of the Nni ≤ N
non-informative agents.

Consider the case N = 100 and T = 5000. The performance of ADMM-RLS
are studied under the hypothesis that an increasing number Nni of systems is
non-informative. Looking at the RMSEs in Table 3 and the estimates reported
in Figure 6, it can be noticed that the quality of the estimate starts to decrease
only when half of the available systems are non-informative. In case of Nni = 20,
the estimates obtained with ADMM-RLS are then compared with the ones
computed with C-RLS and the greedy approaches. As it can be noticed from
the RMSEs reported in Table 4, in presence of non-informative agents SW-RLS
tends to perform better than the other greedy approaches and the accuracy of
the estimates obtained with C-RLS, SW-RLS and ADMM-RLS are comparable.

4.3.2 Agents failure

Consider again N = 100 and T = 5000 and suppose that, due to a change in the
behavior of Nf local agents the parameters of their models suddenly assume dif-
ferent values with respect to [0.9 0.4]. We study the performance of ADMM-RLS
under the hypothesis that the change in the value of the parameters happens
at an unknown instant tn, randomly chosen in the interval [1875, 3750] samples,

17

Table 5: Example 1. ADMM-RLS: ‖RMSEg‖2 vs Nf
Nf

1 10 20 50
‖RMSEg‖2 0.03 0.03 0.03 0.04

0 1000 2000 3000 4000 5000

0.8

1

1.2

1.4

1.6

1.8

(a) θg1 vs θ̂g1

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

(b) |θ̂g1 − θ
g
1 |

0 1000 2000 3000 4000 5000

0.5

1

1.5

(c) θg2 vs θ̂g2

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

(d) |θ̂g2 − θ
g
2 |

Figure 7: Example 1. Model parameters vs Nf . Black : true, red : Nf = 1,
blue : Nf = 10, cyan : Nf = 20, magenta : Nf = 50.

and simulating the change in the local parameters using θn,1 sampled from the
distribution U[0.2 0.21] and θn,2 sampled from U[1.4 1.43] after tn.
Observe that it might be beneficial to use a non-unitary forgetting factor, due
to the change in the local parameters. Consequently, λn, n = 1, . . . , N , is set to
0.99 for all the N agents.
The performance of ADMM-RLS are initially assessed considering an increasing
number of systems subject to failure. See Table 5 and Figure 7. Observe that
the failure of the agents seems not to influence the accuracy of the obtained
estimates if Nf 6= 50. The use of ADMM-RLS thus allows to compute accurate
global estimates even when some of the agent experience a failure.

4.4 Example 2. Time-varying parameters

The presence of the forgetting factor in the cost functions fn (see (20)) allows
to estimate time-varying parameters, as it enables to weight differently past and
currently collected data.
Suppose that the behavior of N systems is described by the ARX model

yn(t+ 1) = θg1(t)yn(t− 1) + θg2(t)un(t− 1) + en(t) (44)

where θg1 = 0.9 sin (x) and θg2 = 0.4 cos (x), with x ∈ [0, 2π], and un ∼ U[2 3].
The white noise sequences en ∼ N (0, Rn), n = 1, . . . , N , have covariances Rn
randomly selected in the interval [1 30] yielding to SNRn ∈ [2.4 6.5] dB.
Considering an estimation horizon T = 1000, imposing φn as φn(0) = 0.1Inθ ,

while θ̂n(0) and θ̂go are sampled from the distributionsN (θ̂g, 2Inθ) andN (θ̂g, Inθ),

18

Table 6: Example 2. ‖RMSEg‖2 vs Method
Method

C-RLS S-RLS SW-RLS M-RLS MW-RLS ADMM-RLS
‖RMSEg‖2 0.08 0.10 0.08 0.09 0.08 0.08

0 200 400 600 800 1000

-1

-0.5

0

0.5

1

(a) θg1 vs θ̂g1

0 200 400 600 800 1000

-0.1

0

0.1

0.2

(b) |θ̂g1 − θ
g
1 |

0 200 400 600 800 1000

-0.5

0

0.5

1

(c) θg2 vs θ̂g2

0 200 400 600 800 1000

0

0.2

0.4

0.6

(d) |θ̂g2 − θ
g
2 |

Figure 8: Example 2. True vs estimated model parameters. Black : true, red :
C-RLS, blue : ADMM-RLS.

respectively, ρ = 0.1 and setting {λn = Λ}Nn=1, with Λ = 0.95, the performances
of ADMM-RLS are compared with the ones of C-RLS and the four greedy ap-
proaches. See Table 6. As for the case where time-invariant parameters have to
be estimated (see Example 1), SW-RLS and MW-RLS tend to perform slightly
better than the other greedy approaches. Note that the accuracy of the esti-
mates C-RLS, SW-RLS and MW-RLS is comparable.

Figure 8 reports the actual global parameters and the estimates obtained
with C-RLS and ADMM-RLS, along with the estimation errors. As already ob-
served, the accuracy of the estimates computed with C-RLS and ADMM-RLS
is comparable.

5 Collaborative estimation for partial consensus

Consider the more general hypothesis that there exist a parameter vector θg ∈
Rng , with ng ≤ nθ such that:

Pθn = θg ∀n ∈ {1, . . . , N}, (45)

where P ∈ Rng×nθ is a matrix assumed to be known a priori. The problem that
we want to solve is then given by

min
{θn}Nn=1

N∑
n=1

fn(θn)

s.t. Pθn = θg, n = 1, . . . , N,

(46)

19

with fn defined as in (20). Note that (46) corresponds to (18) with the consensus
constraint modified as

F (θn) = θg → Pθn = θg.

The considered consensus constraint allows to enforce consensus over a linear
combination of the components of θn. Note that, through proper choices of P ,
different settings can be considered, e.g. if P = Inθ then θn = θg and thus (46)
is equal to (12). We can also enforce consensus only over some components of
θn, so that some of the unknowns are assumed to be global while others are
supposed to assume a different value for each agent.
As we are interested in obtaining an estimate for both {θn}Nn=1 and θg, note
that (46) cannot be solved resorting to a strategy similar to C-RLS (see Ap-
pendix A). In particular, even if properly modified, a method as C-RLS would
allow to compute an estimate for the global parameter only.

The ADMM iterations to solve problem (46) are given by

θ̂(k+1)
n (T) = argmin

θn

L(θn, θ̂
g,(k), δ(k)n), (47)

θ̂g,(k+1) = argmin
θg

L({θ̂(k+1)
n (T)}Nn=1, θ

g, {δ(k)n }Nn=1), (48)

δ(k+1)
n = δ(k)n + ρ(P θ̂(k+1)

n (T)− θ̂g,(k+1)), (49)

with k ∈ N indicating the ADMM iteration, ρ ∈ R+ being a tunable parameter,
δn ∈ Rng representing the Lagrange multiplier and the augmented Lagrangian
L given by

L =

N∑
n=1

{
fn(θn) + δ′n(Pθn − θg) +

ρ

2
‖Pθn − θg‖22

}
. (50)

Note that the dependence on T is explicitly indicated only for the local estimates
θ̂n, as they are the only quantities directly affected by the measurement and the
regressor at T .
Consider the update of the estimate θ̂g. The closed form solution for (48) is

θ̂g,(k+1) =
1

N

N∑
n=1

(
P θ̂(k+1)

n (T) +
1

ρ
δ(k)n

)
. (51)

The estimate of the global parameter is thus updated through the combination

of the mean of {δn}Nn=1 and the mean of {P θ̂(k+1)
n (T)}Nn=1. As expected, (51)

resembles (16), where the local estimates are replaced by a linear combination
of their components.
Consider the update for the estimate of the local parameters. The close form
solution for (47) is given by:

θ̂(k+1)
n (T) = φn(T)

{
Yn(T) + P ′(ρθ̂g,(k) − δ(k)n)

}
, (52)

Yn(t) =

t∑
τ=1

λt−τn Xn(τ)yn(τ), t = 1, . . . , T, (53)

φn(t) =

([
t∑

τ=1

λt−τn Xn(τ)Xn(τ)′

]
+ ρP ′P

)−1
, t = 1, . . . , T. (54)

20

As also in this case we are interested in obtaining recursive formulas for the
local updates, consider θ̂n(T − 1), defined as

θ̂n(T − 1) = φn(T − 1)
(
Yn(T − 1) + P ′(ρθ̂g(T − 1)− δn(T − 1))

)
, (55)

where φn(T − 1) is equal to (54), and θ̂g(T − 1) and δn(T − 1) are the global
estimate and the Lagrange multiplier obtained at T − 1, respectively.
Observe that the following equalities hold

φn(T) = (Xn(T) + ρP ′P)
−1

=

= (λnXn(T − 1) +Xn(T)Xn(T)′ + ρP ′P)
−1

=

= (λn (Xn(T − 1) + ρP ′P) +Xn(T)Xn(T)′ + ρ(1− λn)P ′P)
−1

=

=
(
λnφn(T − 1)−1 +Xn(T)Xn(T)′ + ρ(1− λn)P ′P

)−1
,

with

Xn(t) =

t∑
τ=1

λt−τn Xn(τ)(Xn(τ))′, t = 1, . . . , T.

Introducing the extended regressor

X̃n(T) =
[
Xn(T)

√
ρ(1− λn)P ′

]
∈ Rnθ×(ny+ng) (56)

and applying the matrix inversion lemma, it can be proven that φn can be
updated as

Rn(T) = λnI(ny+ng) + (X̃n(T))′φn(T − 1)X̃n(T), (57)

Kn(T) = φn(T − 1)X̃n(T) (Rn(T))
−1
, (58)

φn(T) = λ−1n (Inθ −Kn(T)(X̃n(T))′)φn(T − 1). (59)

Note that (57)-(59) are similar to (31)-(33), with differences due to the new
definition of the extended regressor.

Consider again (52). Adding and subtracting

λnφn(T)P ′
(
ρθ̂g(T − 1)− δn(T − 1)

)
to (52), θ̂

(k+1)
n can be computed as

θ̂(k+1)
n (T) = φn(T)

[
λn

(
Yn(T − 1) + P ′(ρθ̂g(T − 1)− δn(T − 1)

)
)+

+Xn(T)yn(T)− P ′
(
δ(k)n − λnδn(T − 1)

)
+ P ′ρ

(
θ̂g,(k) − λnθ̂g(T − 1)

)]
=

= θ̂RLSn (T) + θ̂ADMM,(k+1)
n (T). (60)

In particular,

θ̂RLSn (T) = φn(T)λn

{
Yn(T − 1) + ρP ′θ̂(T − 1)− P ′δn(T − 1)

}
+

+ φn(T)X̃n(T)yn(T), (61)

21

and
θ̂ADMM,(k+1)
n (T) = φn(T)P ′

(
ρ∆

(k+1)
g,λn

(T)−∆
(k+1)
λn

)
, (62)

with

∆k+1
g,λn

(T) = θ̂g,(k) − λnθ̂g(T − 1),

∆
(k+1)
λn

(T) = δ(k)n − λnδn(T − 1).

Observe that, as for (16) and (51), (62) differs from (36) because of the presence
of P .

Note that, accounting for the definition of φn(T − 1), exploiting the equal-
ity Kn(T) = φn(T)X̃n(T) (see Section 4 for the proof) and introducing the
extended measurement vector

ỹn(T) =
[
yn(T)′ O1×ng

]′
,

the formula to update θ̂RLSn in (62) can be further simplified as

θ̂RLSn (T) = φn(T − 1)
{(
Yn(T − 1) + P ′(ρθ̂g(T − 1)− δn(T − 1))

)}
+

−Kn(T)(X̃n(T)′)φn(T − 1)
{(
Yn(T − 1) + P ′(ρθ̂g(T − 1)− δn(T − 1))

)}
+

+ φn(T)Xn(T)yn(T) =

= θ̂n(T − 1)−Kn(T)(X̃n(T))′θ̂n(T − 1) + φn(T)X̃n(T)ỹn(T) =

= θ̂n(T − 1) +Kn(T)(ỹn(T)− (X̃n(T))′θ̂n(T − 1)). (63)

As the method tailored to attain full consensus (see Section 4), note that both

θ̂g and δn should be updated on the “cloud”. As a consequence, also θ̂ADMM
n

should be updated on the “cloud”, due to its dependence on both θ̂g and δn. On
the other hand, θ̂RLSn can be updated by the local processors. As for the case
considered in Section 4, note that (63) is independent from k and, consequently,
the synchronization between the local clock and the one on the “cloud”is not
required.

The approach is outlined in Algorithm 4 and the transmissions character-
izing each iteration is still the one reported in the scheme in Figure 3. As a
consequence, the observations made in Section 4 with respect to the informa-
tion exchange between the nodes and the “cloud” hold also in this case.

5.1 Example 3

Assume to collect data for T = 1000 from a set of N = 100 dynamical systems
modelled as

yn(t) = θg1yn(t− 1) + θn,2yn(t− 2) + θg2un(t− 1) + en(t), (64)

where θg = [0.2 0.8]
′
and θn,2 is sampled from a normal distributionN (0.4, 0.0025),

so that it is different for the N systems. The white noise sequence en ∼
N (0, Rn), where, for the “informative’ systems, Rn ∈ [1 20] yields SNR ∈

22

Algorithm 4 ADMM-RLS for partial consensus (N2C2N)

Input: Sequence of observations {Xn(t), yn(t)}Tt=1, initial matrices φn(0) ∈
Rnθ×nθ , initial local estimates θ̂n(0), initial dual variables δn,o, forgetting factors

λn, n = 1, . . . , N , initial global estimate θ̂go , parameter ρ ∈ R+.

1. for t = 1, . . . , T do

Local

1.1. for n = 1, . . . , N do

1.1.1. compute X̃n(t) with (56);

1.1.2. compute Kn(t) and φn(t) with (58) - (59);

1.1.3. compute θ̂RLSn (t) with (63);

1.2. end for;

Global

1.1. do

1.1.1. compute θ̂
ADMM,(k+1)
n (t) with (62), n = 1, . . . , N ;

1.1.2. compute θ̂
(k+1)
n (t) with (60), n = 1, . . . , N ;

1.1.3. compute θ̂g,(k+1) with (51);

1.1.4. compute δ
(k+1)
n with (49), n = 1, . . . , N ;

1.2. until a stopping criteria is satisfied (e.g. maximum number of
iterations attained);

2. end.

Output: Estimated global parameters {θ̂g(t)}Tt=1, estimated local parameters

{θ̂n(t)}Tt=1, n = 1, . . . , N .

[3.1, 14.6] dB (see (42)).

Initializing φn as φn(0) = 0.1Inθ , while θ̂n(0) and θ̂go are sampled from the dis-

tributions N (θ̂g, 2Inθ) and N (θ̂g, Inθ), respectively, {λn = Λ}Nn=1, with Λ = 1,
and ρ = 0.1, the performance of the proposed approach are evaluated. Figure 9
shows θ̂g obtained with ADMM-RLS, along with the estimation error. Observe
that the estimates tends to converge to the actual value of the global parameters.
To further assess the performances of ADMM-RLS, θn, θ̂n and θ̂RLSn obtained
for the 5th system, i.e. n = 5, are compared in Figure 10. It can thus be seen
that the difference between θ̂RLSn and θ̂n is mainly noticeable at the beginning of

the estimation horizon, but then θ̂RLSn and θ̂n are barely distinguishable. Note
that SNR5 = 8.9 dB.

5.1.1 Non-informative agents

Suppose that among the N = 100 systems described by the model in (64),
Nni = 20 randomly chosen agents are non-informative, i.e. their input se-
quences un are null and Rn = 10−8.
As it can be observed from the estimates reported in Figure 11, {θ̂gi }2i=1 con-

23

0 200 400 600 800 1000

-0.2

0

0.2

0.4

(a) θg1 vs θ̂g1

0 200 400 600 800 1000

-0.1

0

0.1

0.2

0.3

(b) |θ̂g1 − θ
g
1 |

0 200 400 600 800 1000

0.6

0.8

1

1.2

1.4

(c) θg2 vs θ̂g2

0 200 400 600 800 1000

0

0.2

0.4

0.6

(d) |θ̂g2 − θ
g
2 |

Figure 9: Example 3. True vs estimated global parameters. Black : true, blue
: ADMM-RLS.

0 200 400 600 800 1000

-0.5

0

0.5

(a) θ5,1 vs θ̂5,1 and θ̂RLS
5,1

0 200 400 600 800 1000

-2

-1.5

-1

-0.5

0

0.5

(b) θ5,2 vs θ̂5,2 and θ̂RLS
5,2

0 200 400 600 800 1000

1

1.5

2

2.5

(c) θ5,3 vs θ̂5,3 and θ̂RLS
5,3

Figure 10: Example 3. Local parameter θn,2, n = 5. Black : true, blue : θ̂5,

red: θ̂RLS5 .

verge to the actual values of the global parameters even if 20% of the systems
provide non-informative data.

The local estimates θ̂n,2 for the 8th and 65th system (SNR65 ≈ 6 dB) are
reported in Figure 12. As, the 8th system is among the ones with a non ex-
citing input, θ̂8,2 = θ̂8,2(0) over the estimation horizon. Instead, θ̂65,2 tends
to converge to the actual value of θ65,2. Even if the purely local parameter is
not retrieved from the data, using the proposed collaborative approach θ8,1 and

24

0 200 400 600 800 1000

-0.2

0

0.2

0.4

(a) θg1 vs θ̂g1

0 200 400 600 800 1000

0.6

0.8

1

1.2

1.4

(b) θg2 vs θ̂g2

Figure 11: Example 3. True vs estimated global parameters. Black : true, blue
: ADMM-RLS.

0 200 400 600 800 1000

-0.4

-0.2

0

0.2

0.4

(a) θ8,2 vs θ̂8,2

0 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

(b) θ65,2 vs θ̂65,2

Figure 12: Example 3. Local parameters θn,2, n = 8, 65. Black : true, blue :
ADMM-RLS.

0 200 400 600 800 1000

0.15

0.2

0.25

0.3

0.35

(a) θ8,1 vs θ̂8,1 and θ̂RLS
8,1

0 200 400 600 800 1000

0.6

0.8

1

1.2

1.4

1.6

(b) θ8,3 vs θ̂8,3 and θ̂RLS
8,3

Figure 13: Example 3. Local parameters θ8,i, i = 1, 3. Black : true, blue :

θ̂RLS8,i , red: θ̂8,i.

θ8,3 are accurately estimated (see Figure 13). We can thus conclude that the
proposed estimation method “forces” the estimates of the global components of
θn to follow θ̂g, which is estimated automatically discarding the contributions
from the systems that lacked excitation.

6 Constrained Collaborative estimation for par-
tial consensus

Suppose that the value of the local parameter θn is constrained to a set Cn and
that this hypothesis holds for all the agents n ∈ {1, . . . , N}. With the objective
of reaching partial consensus among the agents, the problem to be solved can

25

thus be formulated as

minimize

N∑
n=1

fn(θn)

s.t. Pθn = θ, n = 1, . . . , N,

θn ∈ Cn, n = 1, . . . , N.

(65)

Observe that (65) corresponds to (18) if the nonlinear consensus constraint is
replaced with (45).
To use ADMM to solve (65), the problem has to be modified as

minimize

N∑
n=1

{fn(θn) + gn(zn)}

s.t. Pθn = θg n = 1, . . . , N

θn = zn, n = 1, . . . , N

(66)

where {gn}Nn=1 are the indicator functions of the sets {Cn}Nn=1 (defined as in (7))
and {zn ∈ Rnθ}Nn=1 are auxiliary variables. Observe that (66) can be solved with
ADMM. Given the augmented Lagrangian associated with (66), i.e.

L =

N∑
n=1

{fn(θn) + gn(zn) + δ′n,1(θn − zn) + δ′n,2(Pθn − θg)+

+
ρ1
2
‖θn − zn‖22 +

ρ2
2
‖Pθn − θg‖22}, (67)

the iterations that have to be performed to solve the addressed problem with
ADMM are

θ̂(k+1)
n (T) = argmin

θn

L(θn, θ̂
g,(k), z(k)n , δ(k)n), (68)

z(k+1)
n = argmin

zn

L(θ̂n,(k+1)(T), θ̂g,(k), zn, δ
(k)
n), (69)

θ̂g,(k+1) = argmin
θg

L({θ̂(k+1)
n }Nn=1, θ

g, {z(k+1)
n , δ(k)n }Nn=1), (70)

δ
(k+1)
n,1 = δ

(k)
n,1 + ρ1(θ̂(k+1)

n (T)− z(k+1)), (71)

δ
(k+1)
n,2 = δ

(k)
n,2 + ρ2(P θ̂(k+1)

n (T)− θ̂g,(k+1)). (72)

Note that two sets of Lagrangian multipliers, {δn,1}Nn=1 and {δn,2}Nn=1, have
been introduced. While δn,1 ∈ Rng is associated with the partial consensus
constraint, δn,2 ∈ Rnθ is related to the constraint θn ∈ Cn, n = 1, . . . , N .

Solving (69)-(70), the resulting updates for the auxiliary variables and the
global estimates are

z(k+1)
n =PCn

(
θ̂(k+1)
n (T) +

1

ρ1
δ
(k)
n,1

)
, n = 1, . . . , N, (73)

θ̂g,(k+1) =
1

N

N∑
n=1

(
P θ̂(k+1)

n (T) +
1

ρ2
δ
(k)
n,2

)
. (74)

26

Observe that z-update is performed projecting onto the set Cn a combination of

the updated local estimate and δ
(k)
n,1, while θ̂g,(k+1) is computed as in Section 5,

with δn replaced by δn,2.

Consider the close form solution of (68), which is given by

θ̂(k+1)
n (T) = φn(T)

{
Yn(T)− δ(k)n,1 − P ′δ

(k)
n,2 + ρ1z

(k)
n + ρ2P

′θ̂g,(k)
}
, (75)

Yn(t) =

t∑
τ=1

λt−τn Xn(τ)yn(τ), (76)

φn(t) =

([
t∑

τ=1

λt−τn Xn(τ)Xn(τ)′

]
+ ρ1Inθ + ρ2P

′P

)−1
. (77)

Aiming at finding recursive formulas to update the estimates of the local pa-
rameters, we introduce the nth local estimate obtained at T − 1, i.e.

θ̂n(T − 1) = φn(T − 1) {Yn(T − 1)− δn,1(T − 1)− P ′δn,2(T − 1)+

+ρ1zn(T − 1) + ρ2P
′θ̂g(T − 1)

}
(78)

with δn,1(T − 1), δn,2(T − 1), zn(T − 1) and θ̂g(T − 1) being the Lagrange mul-
tipliers and the global estimate obtained at T − 1, respectively.

To obtain recursive formulas to compute θ̂
(k+1)
n , we start proving that φn(T)

can be computed as a function of φn(T − 1). in particular, introducing

Xn(t) =

t∑
τ=1

λt−τn Xn(τ)(Xn(τ))′,

note that

φn(T)−1 = Xn(T) + ρ1Inθ + ρ2P
′P =

= λnXn(T − 1) +Xn(T)Xn(T)′ + ρ1Inθ + ρ2P
′P =

= λn [Xn(T − 1) + ρ1Inθ + ρ2P
′P] +Xn(T)Xn(T)′ + (1− λn)ρ1 + (1− λn)ρ2P

′P =

= λnφn(T − 1)−1 +Xn(T)Xn(T)′ + (1− λn)ρ1 + (1− λn)ρ2P
′P.

Defining the extended regressor as

X̃n(T) =
[
Xn(T)

√
(1− λn)ρ1Inθ

√
(1− λn)ρ2P

′
]
∈ Rnθ×(ny+nθ+ng),

(79)
and applying the matrix inversion lemma, it can be easily proven that φn(T)
can then be computed as:

Rn(T) = λnI(ny+nθ+ng) + X̃n(T)′φn(T)X̃n(T), (80)

Kn(T) = φn(T − 1)X̃n(T)(Rn(T))−1, (81)

φn(T) = λ−1n (Inθ −Kn(T)X̃n(T)′)φn(T − 1). (82)

The same observations relative to the update of φn made in Section 5 holds also
in the considered case.

27

Consider (75). Adding and subtracting

λn

[
−δn,1(T − 1)− P ′δn,2(T − 1) + ρ1zn(T − 1) + ρ2P

′θ̂g(T − 1)
]

to (75) and considering the definition of φn(T − 1) (see (77)), the formula to

update θ̂n can be further simplified as

θ̂(k+1)
n (T) = φn(T){λn (Yn(T − 1)− δn,1(T − 1)− P ′δn,2(T − 1)+

+ρ1zn(T − 1) + ρ2P
′θ̂g(T − 1)

)
+Xn(T)yn(T) + ρ1(z(k)n − λnzn(T − 1))+

+ ρ2P
′(θ̂g,(k) − λnθ̂g(T − 1))− (δ

(k)
n,1 − λnδn,1(T − 1))+

− P ′(δ(k)n,2 − λnδn,2(T − 1))} =

= θ̂n(T − 1)−Kn(T)X̃n(T)θ̂n(T − 1) + φn(T){Xn(T)yn(T)+

+ ρ1(z(k)n − λnzn(T − 1)) + ρ2P
′(θ̂g,(k) − λnθ̂g(T − 1))}+

− (δ
(k)
n,1 − λnδn,1(T − 1))− P ′(δ(k)n,2 − λnδn,2(T − 1))} =

= θ̂RLSn (T) + θ̂ADMM,(k+1)
n (T). (83)

In particular,

θ̂RLSn = φn(T)λn (Yn(T − 1)− δn,1(T − 1)− P ′δn,2(T − 1) + ρ1zn(T − 1)+

+ρ2P
′θ̂g(T − 1)

)
+ φn(T)Xn(T)yn(T), (84)

while

θ̂ADMM,(k+1)
n (T) = φn(T)

[
ρ1∆

(k+1)
z,λn

(T) + ρ2P
′∆

(k+1)
g,λn

(T)−∆
(k+1)
1,λn

− P ′∆(k+1)
2,λn

]
.

(85)
with

∆
(k+1)
z,λn

(T) = z(k)n − λnzn(T − 1),

∆
(k+1)
g,λn

(T) = θ̂g,(k) − λnθ̂g(T − 1),

∆
(k+1)
1,λn

= δ
(k)
n,1 − λnδn,1(T − 1),

∆
(k+1)
2,λn

= δ
(k)
n,2 − λnδn,2(T − 1).

Note that (85) differs from (62) because of the introduction of the additional
terms ∆z,λn and ∆1,λn .
Similarly to what is presented in Section 5, thanks to (82) the formula to update

θ̂RLSn can be further reduced as

θ̂RLSn = θ̂n(T − 1)−Kn(T)(X̃n(T))′θ̂n(T − 1) + φn(T)Xn(T)yn(T) =

= θ̂n(T − 1)−Kn(T)(X̃n(T))′θ̂n(T − 1) + φn(T)X̃n(T)ỹn(T),

with the extended measurement vector ỹn(T) is defined as

ỹn(T) =
[
yn(T)′ O1×nθ O1×nng

]′
.

28

Exploiting the equality Kn(T) = φn(T)X̃n(T) (the proof can be found in (4)),
it can thus be proven that

θ̂RLSn = hatθn(T − 1) +Kn(T)(ỹn(T)− (X̃n(T))′θ̂n(T − 1)). (86)

It is worth remarking that θ̂RLSn can be updated (i) locally, (ii) recursively and
(iii) once per step t.

Remark 5 The proposed method, summarized in Algorithm 5 and in Figure 3,
requires the agents to transmit {θ̂RLSn , φn} to the “cloud”, while the “cloud” has

to communicate θ̂n to each node once it has been computed. As a consequence,
a N2C2N transmission scheme is required. �

Algorithm 5 ADMM-RLS algorithm for constrained consensus

Input: Sequence of observations {Xn(t), yn(t)}Tt=1, initial matrices φn(0) ∈
Rnθ×nθ , initial local estimates θ̂n(0), initial dual variables δon,1 and δon,2, ini-
tial auxiliary variables ẑn,o, forgetting factors λn, n = 1, . . . , N , initial global

estimate θ̂go , parameters ρ1, ρ2 ∈ R+.

1. for t = 1, . . . , T do

Local

1.1. for n = 1, . . . , N do

1.1.1. compute X̃n(t) with (79);

1.1.2. compute Kn(t) and φn(t) with (81) - (82);

1.1.3. compute θ̂RLSn (t) with (86);

1.2. end for;

Global

1.1. do

1.1.1. compute θ̂
ADMM,(k+1)
n (t) with (85), n = 1, . . . , N ;

1.1.2. compute θ̂
(k+1)
n (t) with (83), n = 1, . . . , N ;

1.1.3. compute z
(k+1)
n (t) with (73), n = 1, . . . , N ;

1.1.4. compute θ̂g,(k+1) with (74);

1.1.5. compute δ
(k+1)
n,1 with (71), n = 1, . . . , N ;

1.1.6. compute δ
(k+1)
n,2 with (72), n = 1, . . . , N ;

1.2. until a stopping criteria is satisfied (e.g. maximum number of
iterations attained);

2. end.

Output: Estimated global parameters {θ̂g(t)}Tt=1, estimated local parameters

{θ̂n(t)}Tt=1, n = 1, . . . , N .

29

10
-4

10
-2

10
0

10
2

10
-4

10
-2

10
0

Figure 14: Example 4. N̄ b vs ρ1/ρ2: black = N̄ b
1 , red = N̄ b

2 , blue = N̄ b
3 .

6.1 Example 4

Suppose that the data are gathered from N = 100 systems, described by (64)
and collected over an estimation horizon T = 5000. Moreover, assume that the
a priori information constraints parameter estimates to the following ranges:

`n,1 ≤ θ̂n,1 ≤ upn,1 `n,2 ≤ θ̂n,2 ≤ upn,2
`n,3 ≤ θ̂n,3 ≤ upn,3.

(87)

Observe that the parameters ρ1, ρ2 ∈ R+ have to be tuned. To assess how
the choice of these two parameters affects the satisfaction of (87), consider the
number of steps the local estimates violate the constraints over the estimation
horizon T , {N b

i }3i=1. Assuming that “negligible” violations of the constraints
are allowed, (87) are supposed to be violated if the estimated parameters fall
outside the interval Bn = [`n−10−4 un+10−4]. Considering the set of constraints

S2 = {`n = [0.19 θn,2−0.1 0.79] , upn = [0.21 θn,2+0.1 0.81]},

Figure 14 shows the average percentage of violations over the N agents obtained
fixing ρ2 = 0.1 and choosing

ρ1 = {10−5, 10−4, 10−3, 10−2.10−1, 1, 10, 20}.

Observe that if ρ1 dominates over ρ2 the number of violations tends to decrease,
as in the augmented Lagrangian (87) are weighted more than the consensus
constraint. However, if ρ1/ρ2 > 100, {N̄ b

i }3i=1 tend to slightly increase. It
is thus important to trade-off between the weights attributed to (87) and the
consensus constraint. To evaluate how the stiffness of the constraints affects the
choice of the parameters, {N b

i }3i=1 are computed considering three different sets
of box constraints

S1 = {`n = [0.195 θn,2−0.05 0.795] , upn = [0.205 θn,2+0.05 0.805]},
S2 = {`n = [0.19 θn,2−0.1 0.79] , upn = [0.21 θn,2+0.1 0.81]},
S3 = {`n = [0.15 θn,2−0.5 0.75] , upn = [0.25 θn,2+0.5 0.85]}.

The resulting {N̄ b
i }3i=1 are reported in Figure 15. Note that also in this case the

higher the ratio ρ1/ρ2 is, the smaller {N̄ b
i }3i=1 are. However, also in this case,

the constraint violations tend to increase for ρ1/ρ2 > 100.

Focusing on the assessment of ADMM-RLS performances when the set of
constraints is S2, Figure 16 shows the global estimates obtained using the same

30

10
-4

10
-2

10
0

10
2

10
-10

10
0

(a) N̄b
1

10
-4

10
-2

10
0

10
2

10
-10

10
0

(b) N̄b
2

10
-4

10
-2

10
0

10
2

10
-4

10
-2

10
0

(c) N̄b
3

Figure 15: Example 4. Average percentage of constraint violations N̄ b
i %, i =

1, 2, 3, vs ρ1/ρ2. Black : S1, red : S2, blue : S3.

0 1000 2000 3000 4000 5000

0.18

0.19

0.2

0.21

0.22

(a) θg1 vs θ̂g1

0 1000 2000 3000 4000 5000

0.75

0.8

0.85

(b) θg2 vs θ̂g2

Figure 16: Example 4.Global model parameters: black = true, blue = ADMM-
RLS, red = upper and lower bounds.

initial conditions and forgetting factors as in Section 6, with ρ1 = 10 and ρ2 =
0.1. Note that the global estimates satisfy (87), showing that the constraints on
the global estimate are automatically enforced imposing θn ∈ Cn. As it concerns
the RMSEs for θ̂g (43), they are equal to:

RMSEg1 = 0.001 and RMSEg2 = 0.006,

and their relatively small values can be related to the introduction of the addi-
tional constraints, that allow to limit the resulting estimation error.

Figure 17 show the estimate θ̂n for n = 11, with SNR11 = 10.6 dB. Note
that the estimated parameters tend to satisfy the constraints. In Figure 18 θ̂n
and θ̂RLSn , with n = 11, are compared. As it can be noticed, while θ̂11 satisfied

the imposed constraints on its values, the effect of using θ̂11 to update θ̂RLS11

(see (86)) is not strong enough to enfoce also the estimates computed locally
to satisfy the contraints. To further assess the performance of the proposed

31

0 1000 2000 3000 4000 5000

0.18

0.19

0.2

0.21

0.22

(a) θ11,1 vs θ̂11,1

0 1000 2000 3000 4000 5000

0.3

0.4

0.5

0.6

(b) θ11,2 vs θ̂11,2

0 1000 2000 3000 4000 5000

0.75

0.8

0.85

(c) θ11,3 vs θ̂11,3

Figure 17: Local parameter θn, n = 11. Black : true, blue : ADMM-RLS, red :
upper and lower bounds

0 200 400 600 800 1000

-0.1

0

0.1

0.2

0.3

(a) θ11,1 vs θ̂11,1 and θ̂RLS
11,1

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

(b) θ11,2 vs θ̂11,2 and θ̂RLS
11,2

0 1000 2000 3000 4000 5000

0.6

0.8

1

1.2

(c) θ11,3 vs θ̂11,3 and θ̂RLS
11,3

Figure 18: Local parameter θn, n = 11, for t ∈ [1 1000]. Black : true, blue :

θ̂RLS11 , cyan : θ̂11, red : upper and lower bounds

approach, the RMSE for the local estimates

RMSEn,i =

√√√√∑T
t=1

(
θn,i − θ̂n,i(t)

)2
T

. (88)

is also considered. RMSEn,2 obtained for each of the N systems is reported in
Figure 19 and, as it can be noticed, RMSEn,2 is relatively small. As for the
global parameters’ estimates, this result can be related to the introduction of

32

10 20 30 40 50 60 70 80 90 100

0

0.01

0.02

0.03

0.04

Figure 19: RMSE2 for each agent n, n = 1, . . . , N .

the additional constraints.

7 Concluding Remarks and Future Work

In this report a method for collaborative least-squares parameter estimation
is presented based on output measurements from multiple systems which can
perform local computations and are also connected to a centralized resource in
the “cloud”. The approach includes two stages: (i) a local step, where estimates
of the unkown parameters are obtained using the locally available data, and (ii)
a global stage, performed on the cloud, where the local estimates are fused.
Future research will address extentions of the method to the nonlinear and
multi-class consensus cases. Moreover, an alternative solution of the problem
will be studied so to replace the transmission policy required now, i.e. N2C2N,
with a Node-to-Cloud (N2C) communication scheme. This change should allow
to alleviate problems associated with the communication latency between the
cloud and the nodes. Moreover, it should enable to obtain local estimators that
run independently from the data transmitted by the cloud, and not requiring
synchronous processing by the nodes and “cloud”. Other, solutions to further
reduce the trasmission complexity and to obtain an asynchronous scheme with
the same characteristics as the one presented in this report will be investigated.

A Centralized RLS

Consider problem (12), with the cost functions given by

fn(θn) =
1

2

T∑
t=1

‖yn(t)− (Xn(t))′θn‖22.

The addressed problem can be solved in a fully centralized fashion, if at each step
t all the agents transmit the collected data pairs {yn(t), Xn(t)}, n = 1, . . . , N ,
to the “cloud”. This allows the creation of the lumped measurement vector and
regressor, given by

y̌(t) =
[
y1(t)′ . . . yN (t)′

]′ ∈ RN ·ny×1,

X̌(t) =
[
X1(t)′ . . . XN (t)′

]′ ∈ Rnθ×ny·N .
(89)

33

Through the introduction of the lumped vectors, (12) with fn as in (20) is
equivalent to

min
θg

1

2

T∑
t=1

∥∥y̌(t)− (X̌(t))′θg
∥∥2
2
. (90)

The estimate for the unknown parameters θ̂g can thus be retrieved applying
standard RLS (see [17]), i.e. performing at each step t the following iterations

K(t) = φ(t− 1)X̌(t)
(
ID + (X̌(t))′φ(t− 1)X̌(t)

)−1
, (91)

φ(t) =
(
Inθ −K(t)(X̌(t))′

)
φ(t− 1), (92)

θ̂g(t) = θ̂g(t− 1) +K(t)
(
y̌(t)− (X̌(t))′θ̂g(t− 1)

)
, (93)

with D = N · ny × 1.

References

[1] R. Arablouei, K. DoǧanÃ§ay, S. Werner, and Y. F. Huang. Adaptive dis-
tributed estimation based on recursive least-squares and partial diffusion.
IEEE Transactions on Signal Processing, 62(14):3510–3522, July 2014.

[2] M. Benning, F. Knoll, C. Schönlieb, and T. Valkonen. Pre-
conditioned admm with nonlinear operator constraint, 2015.
https://arxiv.org/abs/1511.00425.

[3] F. Boem, Y. Xu, C. Fischione, and T. Parisini. A distributed estimation
method for sensor networks based on pareto optimization. In 2012 IEEE
51st IEEE Conference on Decision and Control (CDC), pages 775–781, Dec
2012.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Found. Trends Mach. Learn., 3(1):1–122, January 2011.

[5] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed. Diffusion recursive least-
squares for distributed estimation over adaptive networks. IEEE Transac-
tions on Signal Processing, 56(5):1865–1877, May 2008.

[6] F. S. Cattivelli and A. H. Sayed. Diffusion lms strategies for distributed esti-
mation. IEEE Transactions on Signal Processing, 58(3):1035–1048, March
2010.

[7] T. H. Chang, M. Hong, and X. Wang. Multi-agent distributed optimization
via inexact consensus admm. IEEE Transactions on Signal Processing,
63(2):482–497, Jan 2015.

[8] T. H. Chang, A. Nedić, and A. Scaglione. Distributed constrained op-
timization by consensus-based primal-dual perturbation method. IEEE
Transactions on Automatic Control, 59(6):1524–1538, June 2014.

[9] Pedro A. Forero, Alfonso Cano, and Georgios B. Giannakis. Consensus-
based distributed support vector machines. The Journal of Machine Learn-
ing Research, 11:1663–1707, Aug 2010.

34

[10] F. Garin and L. Schenato. A Survey on Distributed Estimation and Control
Applications Using Linear Consensus Algorithms, pages 75–107. Springer
London, London, 2010.

[11] E. Ghadimi, M. Johansson, and I. Shames. Accelerated gradient methods
for networked optimization. In Proceedings of the 2011 American Control
Conference, pages 1668–1673, June 2011.

[12] M.N. Howell, J.P. Whaite, P. Amatyakul, Y.K. Chin, M.A. Salman, C.H.
Yen, and M.T. Riefe. Brake pad prognosis system, Apr 2010. US Patent
7,694,555.

[13] Z. Li, I. Kolmanovsky, E. Atkins, J. Lu, D. P. Filev, and J. Michelini.
Road risk modeling and cloud-aided safety-based route planning. IEEE
Transactions on Cybernetics, 46(11):2473–2483, Nov 2016.

[14] Z. Li, I. Kolmanovsky, E. M. Atkins, J. Lu, D. P. Filev, and Y. Bai.
Road disturbance estimation and cloud-aided comfort-based route plan-
ning. IEEE Transactions on Cybernetics, PP(99):1–13, 2017.

[15] Q. Ling, W. Shi, G. Wu, and A. Ribeiro. Dlm: Decentralized linearized
alternating direction method of multipliers. IEEE Transactions on Signal
Processing, 63(15):4051–4064, Aug 2015.

[16] Z. Liu, Y. Liu, and C. Li. Distributed sparse recursive least-squares
over networks. IEEE Transactions on Signal Processing, 62(6):1386–1395,
March 2014.

[17] L. Ljung. System identification: theory for the user. Prentice-Hall Engle-
wood Cliffs, NJ, 1999.

[18] C. G. Lopes and A. H. Sayed. Incremental adaptive strategies over dis-
tributed networks. IEEE Transactions on Signal Processing, 55(8):4064–
4077, Aug 2007.

[19] C. G. Lopes and A. H. Sayed. Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis. IEEE Transactions on
Signal Processing, 56(7):3122–3136, July 2008.

[20] G. Mateos, I. D. Schizas, and G. B. Giannakis. Distributed recursive least-
squares for consensus-based in-network adaptive estimation. IEEE Trans-
actions on Signal Processing, 57(11):4583–4588, Nov 2009.

[21] Gonzalo Mateos and Georgios B. Giannakis. Distributed recursive least-
squares: Stability and performance analysis. CoRR, abs/1109.4627, 2011.

[22] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud
computing. Technical report, Gaithersburg, MD, United States, 2011.

[23] Joao F. C. Mota, Joao M. F. Xavier, Pedro M. Q. Aguiar, and Markus
Puschel. D-admm: A communication-efficient distributed algorithm for
separable optimization. Trans. Sig. Proc., 61(10):2718–2723, May 2013.

35

[24] R. Olfati-Saber. Distributed kalman filtering for sensor networks. In 2007
46th IEEE Conference on Decision and Control, pages 5492–5498, Dec
2007.

[25] E. Ozatay, S. Onori, J. Wollaeger, U. Ozguner, G. Rizzoni, D. Filev,
J. Michelini, and S. Di Cairano. Cloud-based velocity profile optimiza-
tion for everyday driving: A dynamic-programming-based solution. IEEE
Transactions on Intelligent Transportation Systems, 15(6):2491–2505, Dec
2014.

[26] Rajesh Rajamani. Vehicle dynamics and control. Springer Science, 2 edi-
tion, 2012.

[27] S. S. Ram, A. Nedić, and V. V. Veeravalli. Stochastic incremental gradient
descent for estimation in sensor networks. In 2007 Conference Record of
the Forty-First Asilomar Conference on Signals, Systems and Computers,
pages 582–586, Nov 2007.

[28] S. Sundhar Ram, A. Nedić, and V. V. Veeravalli. A new class of distributed
optimization algorithms: application to regression of distributed data. Op-
timization Methods and Software, 27(1):71–88, 2012.

[29] A. H. Sayed and C. G. Lopes. Distributed recursive least-squares strategies
over adaptive networks. In 2006 Fortieth Asilomar Conference on Signals,
Systems and Computers, pages 233–237, Oct 2006.

[30] I. D. Schizas, G. Mateos, and G. B. Giannakis. Consensus-based distributed
recursive least-squares estimation using ad hoc wireless sensor networks. In
2007 Conference Record of the Forty-First Asilomar Conference on Signals,
Systems and Computers, pages 386–390, Nov 2007.

[31] I. D. Schizas, G. Mateos, and G. B. Giannakis. Distributed lms for
consensus-based in-network adaptive processing. IEEE Transactions on
Signal Processing, 57(6):2365–2382, June 2009.

[32] E. Taheri, O. Gusikhin, and I. Kolmanovsky. Failure prognostics for in-
tank fuel pumps of the returnless fuel systems. In Dynamic Systems and
Control Conference, Oct 2016.

[33] S. Y. Tu and A. H. Sayed. Diffusion strategies outperform consensus strate-
gies for distributed estimation over adaptive networks. IEEE Transactions
on Signal Processing, 60(12):6217–6234, Dec 2012.

[34] E. Wei and A. Ozdaglar. Distributed alternating direction method of mul-
tipliers. In 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), pages 5445–5450, Dec 2012.

[35] L. Xiao, S. Boyd, and S. Lai. A space-time diffusion scheme for peer-
to-peer least-squares estimation. In 2006 5th International Conference on
Information Processing in Sensor Networks, pages 168–176, April 2006.

[36] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor
fusion based on average consensus. In IPSN 2005. Fourth International
Symposium on Information Processing in Sensor Networks, 2005., pages
63–70, April 2005.

36

[37] C. y. Chong, S. Mori, and K. c. Chang. Adaptive distributed estimation.
In 26th IEEE Conference on Decision and Control, volume 26, pages 2233–
2238, Dec 1987.

[38] Ruiliang Zhang and James T. Kwok. Asynchronous distributed admm for
consensus optimization. In Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32, ICML’14,
pages II–1701–II–1709. JMLR.org, 2014.

37

