LCOV - code coverage report
Current view: top level - source/tests - TestSLDL.cpp (source / functions) Hit Total Coverage
Test: LibForBES Unit Tests Lines: 70 70 100.0 %
Date: 2016-04-18 Functions: 10 10 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * File:   TestSLDL.cpp
       3             :  * Author: Pantelis Sopasakis
       4             :  *
       5             :  * Created on Nov 5, 2015, 4:08:41 AM
       6             :  * 
       7             :  * ForBES is free software: you can redistribute it and/or modify
       8             :  * it under the terms of the GNU Lesser General Public License as published by
       9             :  * the Free Software Foundation, either version 3 of the License, or
      10             :  * (at your option) any later version.
      11             :  *  
      12             :  * ForBES is distributed in the hope that it will be useful,
      13             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
      15             :  * GNU Lesser General Public License for more details.
      16             :  * 
      17             :  * You should have received a copy of the GNU Lesser General Public License
      18             :  * along with ForBES. If not, see <http://www.gnu.org/licenses/>.
      19             :  */
      20             : 
      21             : #include "TestSLDL.h"
      22             : 
      23             : 
      24           1 : CPPUNIT_TEST_SUITE_REGISTRATION(TestSLDL);
      25             : 
      26           3 : TestSLDL::TestSLDL() {
      27           3 : }
      28             : 
      29           6 : TestSLDL::~TestSLDL() {
      30           6 : }
      31             : 
      32           3 : void TestSLDL::setUp() {
      33           3 : }
      34             : 
      35           3 : void TestSLDL::tearDown() {
      36           3 : }
      37             : 
      38           1 : void TestSLDL::testFactorizeAndSolve() {
      39           1 :     const size_t n = 5;
      40           1 :     const size_t m = 2;
      41           1 :     Matrix X = MatrixFactory::MakeRandomSparse(n, m, 5, 0.0, 1.0);
      42             : 
      43           2 :     Matrix Xt(X);
      44           1 :     Xt.transpose();
      45             : 
      46           2 :     Matrix x = MatrixFactory::MakeRandomMatrix(n, 1, 0.0, 1.0, Matrix::MATRIX_DENSE);
      47           2 :     Matrix sol;
      48             : 
      49           1 :     double beta = 1.13453;
      50           1 :     FactoredSolver * solver = new S_LDLFactorization(X, beta);
      51           1 :     int status = solver -> factorize();
      52           1 :     _ASSERT_EQ(ForBESUtils::STATUS_OK, status);
      53           1 :     status = solver -> solve(x, sol);
      54           1 :     _ASSERT_EQ(ForBESUtils::STATUS_OK, status);
      55             : 
      56           2 :     Matrix g1 = X * Xt * sol;
      57           2 :     Matrix g2 = x;
      58           1 :     status = Matrix::add(g2, -beta, sol, 1.0);
      59           1 :     _ASSERT_EQ(ForBESUtils::STATUS_OK, status);
      60             : 
      61           1 :     _ASSERT_EQ(g1, g2);
      62             : 
      63           2 :     delete solver;
      64           1 : }
      65             : 
      66           1 : void TestSLDL::testDenseShort() {
      67           1 :     const size_t n = 3;
      68           1 :     const size_t m = 7;
      69           1 :     Matrix A = MatrixFactory::MakeRandomMatrix(n, m, 0.0, 1.0); /* dense matrix*/
      70           2 :     Matrix x = MatrixFactory::MakeRandomMatrix(n, 1, 0.0, 1.0, Matrix::MATRIX_DENSE);
      71           1 :     double beta = 0.5234234;
      72           2 :     Matrix sol;
      73             : 
      74           2 :     Matrix At(A);
      75           1 :     At.transpose();
      76             : 
      77           1 :     FactoredSolver * solver = new S_LDLFactorization(A, beta);
      78           1 :     int status = solver->factorize();
      79           1 :     _ASSERT_EQ(ForBESUtils::STATUS_OK, status);
      80           1 :     status = solver -> solve(x, sol);
      81           1 :     _ASSERT_EQ(ForBESUtils::STATUS_OK, status);
      82             : 
      83             : 
      84           2 :     Matrix g1 = A * At * sol;
      85           2 :     Matrix g2 = x;
      86           1 :     Matrix::add(g2, -beta, sol, 1.0);
      87             : 
      88           1 :     delete solver;
      89             : 
      90           2 :     _ASSERT_EQ(g1, g2);
      91             : 
      92           1 : }
      93             : 
      94           1 : void TestSLDL::testDenseTall() {
      95           1 :     const size_t n = 10;
      96           1 :     const size_t m = 2;
      97             :     //Matrix X = MatrixFactory::MakeRandomSparse(n, m, 5, 0.0, 1.0);
      98             :     double X_data[20] = {
      99             :         0.004634224134067,
     100             :         0.774910464711502,
     101             :         0.817303220653433,
     102             :         0.868694705363510,
     103             :         0.084435845510910,
     104             :         0.399782649098896,
     105             :         0.259870402850654,
     106             :         0.800068480224308,
     107             :         0.431413827463545,
     108             :         0.910647594429523,
     109             :         0.181847028302852,
     110             :         0.263802916521990,
     111             :         0.145538980384717,
     112             :         0.136068558708664,
     113             :         0.869292207640089,
     114             :         0.579704587365570,
     115             :         0.549860201836332,
     116             :         0.144954798223727,
     117             :         0.853031117721894,
     118             :         0.622055131485066
     119           1 :     };
     120           1 :     Matrix X(n, m, X_data);
     121             : 
     122           1 :     double beta = 0.567;
     123           1 :     FactoredSolver * solver = new S_LDLFactorization(X, beta);
     124           1 :     int status = solver -> factorize();
     125           1 :     _ASSERT_EQ(ForBESUtils::STATUS_OK, status);
     126             : 
     127           2 :     Matrix x(10, 1);
     128          11 :     for (size_t i = 0; i < 10; i++) {
     129          10 :         x[i] = 1.0;
     130             :     }
     131             : 
     132             : 
     133           2 :     Matrix sol;
     134           1 :     status = solver -> solve(x, sol);
     135           1 :     _ASSERT_EQ(ForBESUtils::STATUS_OK, status);
     136             : 
     137             :     double sol_expected_data[10] = {
     138             :         1.485739599580427,
     139             :         0.238313604427297,
     140             :         0.352734275537945,
     141             :         0.291783384355755,
     142             :         0.344089316703959,
     143             :         0.315246516232826,
     144             :         0.564132239648385,
     145             :         0.378781855470006,
     146             :         -0.138528061838890,
     147             :         -0.494174777885299,
     148           1 :     };
     149           2 :     Matrix sol_expected(10, 1, sol_expected_data);
     150             : 
     151           1 :     _ASSERT_EQ(sol_expected, sol);
     152           2 :     delete solver;
     153             : 
     154           4 : }
     155             : 

Generated by: LCOV version 1.10