LCOV - code coverage report
Current view: top level - source/tests - TestHuber.cpp (source / functions) Hit Total Coverage
Test: LibForBES Unit Tests Lines: 46 46 100.0 %
Date: 2016-04-18 Functions: 9 9 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :  * File:   TestHuber.cpp
       3             :  * Author: Pantelis Sopasakis
       4             :  *
       5             :  * Created on Oct 30, 2015, 2:19:35 AM
       6             :  * 
       7             :  * ForBES is free software: you can redistribute it and/or modify
       8             :  * it under the terms of the GNU Lesser General Public License as published by
       9             :  * the Free Software Foundation, either version 3 of the License, or
      10             :  * (at your option) any later version.
      11             :  *  
      12             :  * ForBES is distributed in the hope that it will be useful,
      13             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
      15             :  * GNU Lesser General Public License for more details.
      16             :  * 
      17             :  * You should have received a copy of the GNU Lesser General Public License
      18             :  * along with ForBES. If not, see <http://www.gnu.org/licenses/>.
      19             :  */
      20             : 
      21             : #include "TestHuber.h"
      22             : #include "HuberLoss.h"
      23             : 
      24             : 
      25           1 : CPPUNIT_TEST_SUITE_REGISTRATION(TestHuber);
      26             : 
      27           2 : TestHuber::TestHuber() {
      28           2 : }
      29             : 
      30           4 : TestHuber::~TestHuber() {
      31           4 : }
      32             : 
      33           2 : void TestHuber::setUp() {
      34           2 : }
      35             : 
      36           2 : void TestHuber::tearDown() {
      37           2 : }
      38             : 
      39             : const static double X[] = {
      40             :     0.106216344928664,
      41             :     0.372409740055537,
      42             :     0.198118402542975,
      43             :     0.489687638016024,
      44             :     0.339493413390758,
      45             :     0.951630464777727,
      46             :     0.920332039836564,
      47             :     0.052676997680793,
      48             :     0.737858095516997,
      49             :     0.269119426398556
      50             : };
      51             : 
      52             : const static double D[] = {
      53             :     1.4374274329354852,
      54             :     0.3054708068289311,
      55             :     -0.0290824365339767,
      56             :     -0.8234036458714026,
      57             :     -0.7637012146815048,
      58             :     -0.2048482849078404,
      59             :     0.8995586109397722,
      60             :     1.0842669895961112,
      61             :     1.1927942674890943,
      62             :     -0.3403099725494878
      63             : };
      64             : 
      65           1 : void TestHuber::testHessian() {
      66           1 :     const size_t n = 10;
      67           1 :     const double * xdata = X;
      68           1 :     Matrix x(n, 1, xdata);
      69           1 :     const double delta = 0.2;
      70           1 :     Function * huber = new HuberLoss(delta);
      71             : 
      72           2 :     Matrix Hz(n, 1);
      73           1 :     const double * ddata = D;
      74           2 :     Matrix z(n, 1, ddata);
      75           1 :     int status = huber->hessianProduct(x, z, Hz);
      76           1 :     _ASSERT(ForBESUtils::is_status_ok(status));
      77             : 
      78             :     double fstar;
      79           1 :     _ASSERT(!huber->category().defines_conjugate());
      80           1 :     _ASSERT_EQ(ForBESUtils::STATUS_UNDEFINED_FUNCTION, huber->callConj(x, fstar));
      81             : 
      82             :     /* test the assignment operator */
      83           1 :     Function * huber2 = new HuberLoss(delta);
      84           1 :     _ASSERT_OK(*huber = *huber);
      85           2 :     _ASSERT_EXCEPTION(*huber2 = *huber, std::logic_error);
      86             : 
      87           1 : }
      88             : 
      89           1 : void TestHuber::testCall() {
      90           1 :     const size_t n = 10;
      91           1 :     const double * xdata = X;
      92           1 :     Matrix x(n, 1, xdata);
      93           1 :     const double delta = 0.2;
      94           1 :     Function * huber = new HuberLoss(delta);
      95             : 
      96             :     double f;
      97           2 :     Matrix grad(n, 1);
      98             : 
      99           1 :     _ASSERT(huber->category().defines_f());
     100           1 :     int status = huber->call(x, f, grad);
     101           1 :     _ASSERT_EQ(ForBESUtils::STATUS_OK, status);
     102           1 :     const double tol = 1e-12;
     103           1 :     _ASSERT_NUM_EQ(3.513800016594281, f, tol);
     104             : 
     105           1 :     status = huber->call(x, f);
     106           1 :     _ASSERT_EQ(ForBESUtils::STATUS_OK, status);
     107           1 :     _ASSERT_NUM_EQ(3.513800016594281, f, tol);
     108             : 
     109             :     const double grad_expected_data[n] = {
     110             :         0.531081724643320,
     111             :         1.000000000000000,
     112             :         0.990592012714875,
     113             :         1.000000000000000,
     114             :         1.000000000000000,
     115             :         1.000000000000000,
     116             :         1.000000000000000,
     117             :         0.263384988403965,
     118             :         1.000000000000000,
     119             :         1.000000000000000
     120           1 :     };
     121             : 
     122           2 :     Matrix grad_expected(n, 1, grad_expected_data);
     123             : 
     124           1 :     _ASSERT_EQ(grad_expected, grad);
     125             : 
     126           2 :     delete huber;
     127           4 : }
     128             : 

Generated by: LCOV version 1.10