WORKSHOP ON

MODEL PREDICTIVE CONTROL

FROM THE BASICS TO REINFORCEMENT LEARNING

Alberto Bemporad alberto.bemporad@imtlucca.it
Mario Zanon mario.zanon@imtlucca.it
SCHOOL
IMT FOR ADVANCED
STUDIES
LUCCA

_ CDC'19, Nice, France December 10,2019



WORKSHOP PROGRAM

> Reinforcement learning and MPC (AB+MZ)

Supplementary material:

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html

https://mariozanon.wordpress.com/teaching/
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LEARNING MPC FROM DATA

e Goal: learn MPC law from data that optimizes a given index

e Reinforcement learning = use data and a performance index to learn an
optimal policy

e Q-learning: learn Q-function defining the MPC law from data
e Policy gradient methods: learn optimal policy coefficients directly from data
using stochastic gradient descent

e Global optimization methods: learn MPC parameters (weights, models,
horizon, solver tolerances, ...) by optimizing observed closed-loop performance
WeC23.4
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DATA-DRIVEN MPC



DATA-DRIVEN MPC

optimization
algorithm

process

outputs

y(t)

set-points

r(t)

'T‘ measurements

e Can we design an MPC controller without first identifying a model of the
open-loop process ?
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DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

____________________________

Collect aset of data {u(t),y(t),p(¢)},t =1,...,N

Specify a desired closed-loop linear model M fromr to y

Compute r,(t) = M#y(t) from pseudo-inverse model M# of M

Identify linear (LPV) model K, frome, = r, — y (virtual tracking error) tou
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DATA-DRIVEN MPC

e Design alinear MPC (reference governor) to generate the reference r

p
11
B — T o191
7l e : ‘
ro ——| MPC K, @ % I—:?
desired EM |
reference i | Linear prediction model
e (totally known !)
P N
-t —
1 1
7! Hﬁ i
T0 MPC 1 M J' i Yy
Ko ——u
| M :

6/28



DATA-DRIVEN MPC - AN EXAMPLE

o Experimental results: MPC handles soft constraints on u, Au and y

(motor equipment by courtesy of TU Delft)
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No open-loop process model is identified to design the MPC controller!

p-(DC'19 7/28

9 A. Bemporad - MPCV



OPTIMAL DATA-DRIVEN MPC

e Question: How to choose the reference model M ?

____________________________

e Canwe choose M from data so that K, is an optimal controller ?
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OPTIMAL DATA-DRIVEN MPC

o |dea: parameterize desired closed-loop model M (#) and optimize

N—-1
min J (6) N Z Wy (r(t) — yp(6, 1)) + WauAul(0,t) + Wae(u(t) — uy(6,1))*

Parfc-rmav\ce index Ldehf:i.fica&iov\ error

¢ Evaluating J(6) requires synthesizing K, (¢) from data and simulating the
nominal model and control law

Yp(0,1) = M(O)r(t)  up(8,t) = Kp(0)(r(t) — yp(0,1))
Auy(0,t) = up(0,t) —up(6,t — 1)

e Optimal 6 obtained by solving a (non-convex) nonlinear programming problem

2019 A. Bemporad - MPC Workshop - CDC'19 9/28



OPTIMAL DATA-DRIVEN MPC

e Results: linear process
z—0.4
G =
()= 2015 — 0%
The data-driven controller is only 1.3% worse ' ,
than model-based LQR .
e Results: nonlinear (Wiener) process 28
yr(t) = G(2)u(t) K V

y(t) = |yc(t)|arctan(y(t)) 5,
The data-driven controller is 24% better than
LQR based on identified open-loop model ! 2
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DATA-DRIVEN OPTIMAL POLICY SEARCH



POLICY SEARCH SETUP

e Plant + environment dynamics (unknown):

- s¢ states of plant & environment
St41 = h(StypuUt,dt) .
- p: exogenous signal (e.g., reference)

- wuy control input

- d; unmeasured disturbances

e Control policy:  : R"*st"» — R™« deterministic control policy

Uy = 7T(3t7pt)
e Closed-loop performance of an execution defined as
o0
joo (ﬂ-a S50, {pb d[}é:O) = Z p(3€7p€7 7"(5671’2))
=0

p(se,pe, m(s¢,pe)) = stage cost
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OPTIMAL POLICY SEARCH PROBLEM

¢ We want to minimize the expected performance

‘7(7() = ESm{Pe’dz} [joo(ﬂ-’ 50, {p@, df})]

e Optimal policy: 7* = argmin J ()
T

o Simplifications:

- Finite parameterization: m = 7 (s¢, p+) with K'=matrix to optimize

L—-1
L—1
- Finitehorizon:jL(w,so,{pg,dg}e:O): E p(Sz,p[,Tr(Sg,pz))
£=0

e Optimal policy search: use stochastic gradient descent (SGD)
K+ Ki_1 — atD(thl)
with D(K;_1) = descent direction
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DESCENT DIRECTION

e The descent direction D(K;_1) is computed by generating:

- N perturbations s(()i) around the current state s;

- N, random reference signals réj) oflength L,/ =0,...,L —1

- Ngrandom disturbance signals déh) oflength L,/ =0,...,L —1

N,

s P q \//H\J/
D(K,_1) Vi Tn(mr,_ s dP 1)) TR

1 N

2
2

>
Il

i=1 j=1

e The SGD step corresponds to a mini-batch of size M = Ny - N,. - Ny
e Computing V i J1, requires predicting the effect of 7 over L future steps

o We use alocal linear model just for computing V k J1,, using recursive linear
system identification
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OPTIMAL POLICY SEARCH ALGORITHM

e Ateachtimet:
1. Acquire current s;
2. Recursively update the local linear model
3. Estimate the direction of descent D(K;—1)

4. Update policy: K¢ < Ki—1 — o D(K¢—1)

e If policy is learned online:
- Compute the nearest policy K; to K, that stabilizes the local model

K} = argm}}nHK - K3

s.t. K stabilizes local linear model Linear makrix inequality

e When policy is learned online, exploration is guaranteed by the reference r;
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SPECIAL CASE: QUTPUT TRACKING

® I = [yt, Yt—15 -+ Yt—n,» Ut—1, Ut—2, ~-~7ut—n¢]

Au; = up —ug—1  control input increment

o Stagecost: [l yer1 =1 1y, + [ Aue % + [l aeea [,

e integral action dynamics ¢:+1 = ¢t + (y¢41 — 7¢)

e Linear policy parametrization:

KS
i (st, 1) = —K° 54 — K" -1y, K= [ ]
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EXAMPLE: MODEL-FREE LOR

—0.669 0.378 0.233 ~0.295
Tip1 = [—0,288 —0.147 70.638] T + [70.325] Uy
—0.337  0.589 0.043 —0.258
model is unkhown
Yy = [-1.139 0.319 —0.571]z

Online tracking performance (no disturbance, d; = 0):
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LTI EXAMPLE

Evolution of the error || K; — K,pt|2:

ar — |[Ke = Kope ||
2 |
0 |
0 10000 20000 30000
Time t

Ksap = [—1.255,0.218,0.652, 0.895, 0.050, 1.115, —2.186]

Kopt = [—1.257,0.219,0.653,0.898,0.050, 1.141, —2.196]
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NONLINEAR EXAMPLE

I nputs
I States

Cooling Jacket

Reaction
A—B

Product

Continuously Stirred Tank Reactor (CSTR) (1]

model is unkhnown

Feed:
- concentration: 10kg mol/m?
- temperature: 298.15K

T=T+nr, Ca=Ca+ne, nr,nc~N(00%), o=0.01

0 0

Qy—[l 0

R=0.1 Qq_[

0.01 0
0 0

[1] figure retrived from apmonitor.com
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NONLINEAR EXAMPLE

n; ne L
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o Approach currently extended to multiple linear and nonlinear policies
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AUTOTUNING OF MPC



AUTO-TUNING

e Controller depends on a vector x of parameters

e Parameters can be many things:

- MPC weights, coefficients of the prediction model, horizons L1048
- Entries of covariance matrices in Kalman filter =

Ty & @@
- Tolerances used in numerical solvers Ty Ty

o Define a performance index f over a closed-loop simulation or real experiment.
For example:

Z ly(t) = ()]

(Ero«:mhg quatu&j)

o Auto-tuning = find the best combination of parameters that solves the
global optimization problem
min f(x)
x
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AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

e Solving min f(z) requires an optimization algorithm that, preferably:

- does not require the gradient VF of f(x)
(derivative-free or black-box optimization )

- does not get stuck on local minima
(global optimization)

- requires the fewest evaluations of the cost function f
(which is expensive to evaluate)

©2019 A. Bemporad - MPC Workshop - CDC'19 21/28



AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

o Several derivative-free global optimization algorithms exist:

- Lipschitzian-based partitioning techniques:
o DIRECT (Dlvide in RECTangles)
e Multilevel Coordinate Search (MCS)

Response surface methods
o Kriging ,DACE
o Efficient global optimization (EGO)
o Bayesian optimization

Genetic algorithms (GA)

Particle swarm optimization (PSO)
o New method: inverse distance weighting + radial basis function surrogates
(GLIS)
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AUTO-TUNING: MPC EXAMPLE

e We want to auto-tune the linear MPC controller
50—1

min " (s — () + (W2 (g — 1))’
k=0
St. Tpy1 = Axy, + Buy,

Yo = Cxy,
—1.5§uk§1.5
up =un,, Vk=Ny,...,N -1

e Calibration parameters: = = [log;, W2", N,/]
e Range: -5 <z <3,1 <zy <50

o Closed-loop performance objective:

T

£ = D2 w(e) — r()? + 3 u(t) — ult — 1) + 2N,

t=0
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AUTO-TUNING: EXAMPLE

15 output
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e Result: 2* = [-0.2341,2.3007] WA = (.5833, N, = 2
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AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
ss Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

»f Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)

WeC23.4

e Cons:

i@ Need to quantify an objective function f(z)
i® No room for qualitative assessments of closed-loop performance

i@ Often objectives are multiple, not clear how to blend them in a single one

e Current research: semi-automatic tuning: an algorithm suggests new tuning
params to try based on human assessments
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2019 A Bemporad - MPC Wo



LEARNING MPC FROM DATA - LESSON LEARNED SO FAR

e Model/policy structure includes real plant/optimal policy:

- Sys-id + model-based synthesis and reinforcement learning lead to same policies

- Reinforcement learning may require more data
(model-based can instead “extrapolate” optimal actions)

e Model/policy structure does not include real plant/optimal policy:

- optimal policy learned from data may be better than model-based optimal policy

- when open-loop model is used as a tuning parameter, learned model can be quite
different from best open-loop model that can be identified from the same data
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CONCLUSIONS

e MPCis a universal control methodology:
- different models (linear, nonlinear, hybrid, stochastic, ...)
- optimize performance index subject to constraints

- widely applicable to many domains (process industries, automotive, aerospace,
smart grids, ...)

o MPCresearch:
1. Linear, linear uncertain, explicit: mature theory
Hybrid, nonlinear, economic MPC: still a few open issues
Stochastic and robust nonlinear MPC: many open issues
Embedded optimization methods for MPC: anything new can be very useful

Data-driven MPC / Reinforcement learning for MPC: wide open area

S T o

System identification for MPC: a lot to “learn” from machine learning

o MPC technology: already mature for industry
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THEEND

e The contents presented in this workshop are an excerpt of two PhD courses
held every year at IMT Lucca, Italy:
- A.Bemporad - Model Predictive Control

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html
April 1-3, 6-7,2020

- M. Zanon - Numerical Methods for Optimal Control

https://mariozanon.wordpress.com/teaching/

May 25-29, 2020

e Registration is free, but compulsory
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