WORKSHOP ON

MODEL PREDICTIVE CONTROL

FROM THE BASICS TO REINFORCEMENT LEARNING

Alberto Bemporad Mario Zanon

alberto.bemporad@imtlucca.it

mario.zanon@imtlucca.it

CDC'19, Nice, France

December 10, 2019

WORKSHOP PROGRAM

	Linear MPC: i	introduction	and algorithms	(AB)
--	---------------	--------------	----------------	------

	Reinforcement	learning and MPC	(AB+MZ)
--	---------------	------------------	---------

Concluding remarks (AB+MZ)

Supplementary material:

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html https://mariozanon.wordpress.com/teaching/

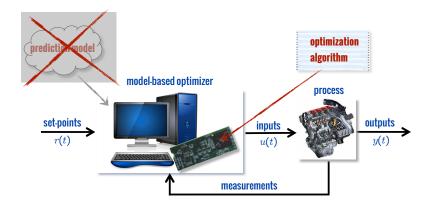
LEARNING MPC FROM DATA

- Goal: learn MPC law from data that optimizes a given index
- Reinforcement learning = use data and a performance index to learn an optimal policy
- Q-learning: learn Q-function defining the MPC law from data (Gros, Zanon, in press) (Zanon, Gros, Bemporad, 2019)
- Policy gradient methods: learn optimal policy coefficients directly from data using stochastic gradient descent (Ferrarotti, Bemporad, 2019)
- Global optimization methods: learn MPC parameters (weights, models, horizon, solver tolerances, ...) by optimizing observed closed-loop performance (Piga, Forgione, Formentin, Bemporad, CDC 2019)

 WeC23.4

(Forgione, Piga, Bemporad, submitted)

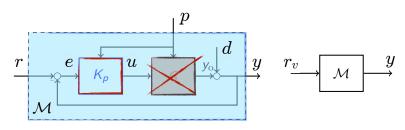
DATA-DRIVEN MPC



 Can we design an MPC controller without first identifying a model of the open-loop process?

DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

(Campi, Lecchini, Savaresi, 2002) (Formentin et al., 2015)

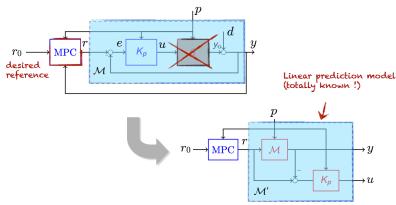


- Collect a set of data $\{u(t),y(t),p(t)\}$, $t=1,\ldots,N$
- $\bullet \;$ Specify a desired closed-loop linear model ${\mathcal M}$ from r to y
- Compute $r_v(t) = \mathcal{M}^\# y(t)$ from pseudo-inverse model $\mathcal{M}^\#$ of \mathcal{M}
- Identify linear (LPV) model K_p from $e_v = r_v y$ (virtual tracking error) to u

DATA-DRIVEN MPC

ullet Design a linear MPC (reference governor) to generate the reference r

(Bemporad, Mosca, 1994) (Gilbert, Kolmanovsky, Tan, 1994)

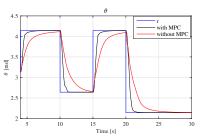


MPC designed to handle input/output constraints and improve performance

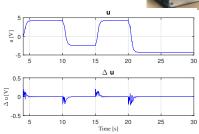
(Piga, Formentin, Bemporad, 2017

DATA-DRIVEN MPC - AN EXAMPLE

 \bullet Experimental results: MPC handles soft constraints on $u,\Delta u$ and y (motor equipment by courtesy of TU Delft)



desired tracking performance achieved

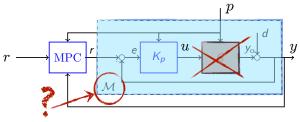


constraints on input increments satisfied

No open-loop process model is identified to design the MPC controller!

OPTIMAL DATA-DRIVEN MPC

• **Question**: How to choose the reference model \mathcal{M} ?



• Can we choose ${\mathcal M}$ from data so that K_p is an optimal controller?

• Idea: parameterize desired closed-loop model $\mathcal{M}(\theta)$ and optimize

$$\min_{\theta} J(\theta) = \frac{1}{N} \sum_{t=0}^{N-1} \underbrace{W_y(r(t) - y_p(\theta, t))^2 + W_{\Delta u} \Delta u_p^2(\theta, t)}_{\text{performance index}} + \underbrace{W_{\text{fit}}(u(t) - u_v(\theta, t))^2}_{\text{identification error}}$$

 \bullet Evaluating $J(\theta)$ requires synthesizing $K_p(\theta)$ from data and simulating the nominal model and control law

$$y_p(\theta, t) = \mathcal{M}(\theta)r(t) \qquad u_p(\theta, t) = K_p(\theta)(r(t) - y_p(\theta, t))$$
$$\Delta u_p(\theta, t) = u_p(\theta, t) - u_p(\theta, t - 1)$$

• Optimal θ obtained by solving a (non-convex) nonlinear programming problem

Results: linear process

$$G(z) = \frac{z - 0.4}{z^2 + 0.15z - 0.325}$$

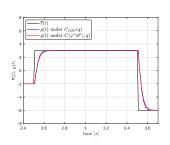
The data-driven controller is **only 1.3% worse** than model-based LQR

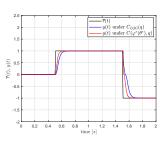
• Results: nonlinear (Wiener) process

$$y_L(t) = G(z)u(t)$$

 $y(t) = |y_L(t)| \arctan(y_L(t))$

The data-driven controller is 24% better than LQR based on identified open-loop model!





Plant + environment dynamics (unknown):

$$s_{t+1} = h(s_t, p_t, u_t, d_t) \\ -s_t \text{ states of plant \& environment} \\ -p_t \text{ exogenous signal (e.g., reference)} \\ -u_t \text{ control input} \\ -d_t \text{ unmeasured disturbances}$$

• Control policy: $\pi: \mathbb{R}^{n_s+n_p} \longrightarrow \mathbb{R}^{n_u}$ deterministic control policy

$$u_t = \pi(s_t, p_t)$$

• Closed-loop performance of an execution defined as

$$\mathcal{J}_{\infty}(\pi, s_0, \left\{p_{\ell}, d_{\ell}\right\}_{\ell=0}^{\infty}) = \sum_{\ell=0}^{\infty} \rho(s_{\ell}, p_{\ell}, \pi(s_{\ell}, p_{\ell}))$$
$$\rho(s_{\ell}, p_{\ell}, \pi(s_{\ell}, p_{\ell})) = \text{stage cost}$$

OPTIMAL POLICY SEARCH PROBLEM

We want to minimize the expected performance

$$\mathcal{J}(\pi) = \mathbb{E}_{s_0, \{p_\ell, d_\ell\}} \left[\mathcal{J}_{\infty}(\pi, s_0, \{p_\ell, d_\ell\}) \right]$$

- $\bullet \ \, \operatorname{Optimal policy:} \pi^* = \ \, \operatorname{argmin}_{\pi} \ \, \mathcal{J}(\pi)$
- Simplifications:
 - Finite parameterization: $\pi=\pi_K(s_t,p_t)$ with K=matrix to optimize
 - Finite horizon: $\mathcal{J}_L(\pi,s_0,\{p_\ell,d_\ell\}_{\ell=0}^{L-1}) = \sum_{\ell=0}^{L-1} \rho(s_\ell,p_\ell,\pi(s_\ell,p_\ell))$
- Optimal policy search: use stochastic gradient descent (SGD)

$$K_t \leftarrow K_{t-1} - \alpha_t \mathcal{D}(K_{t-1})$$

with $\mathcal{D}(K_{t-1})$ = descent direction

DESCENT DIRECTION

- The descent direction $\mathcal{D}(K_{t-1})$ is computed by generating:
 - N_s perturbations $s_0^{(i)}$ around the current state s_t
 - N_r random reference signals $r_\ell^{(j)}$ of length $L,\ell=0,\ldots,L-1$
 - N_d random disturbance signals $d_\ell^{(h)}$ of length $L,\ell=0,\ldots,L-1$

$$\mathcal{D}(K_{t-1}) = \sum_{i=1}^{N_s} \sum_{j=1}^{N_p} \sum_{k=1}^{N_q} \nabla_K \mathcal{J}_L(\pi_{K_{t-1}}, s_0^{(i)}, \{r_\ell^{(j)}, d_\ell^{(k)}\}_\ell)$$

- ullet The SGD step corresponds to a mini-batch of size $M=N_s\cdot N_r\cdot N_d$
- Computing $\nabla_K \mathcal{J}_L$ requires predicting the effect of π over L future steps
- We use a local linear model just for computing $\nabla_K \mathcal{J}_L$, using recursive linear system identification

OPTIMAL POLICY SEARCH ALGORITHM

- At each time t:
 - 1. Acquire current s_t
 - 2. Recursively update the local linear model
 - 3. Estimate the direction of descent $\mathcal{D}(K_{t-1})$
 - 4. Update policy: $K_t \leftarrow K_{t-1} \alpha_t \mathcal{D}(K_{t-1})$
- If policy is learned online:
 - Compute the nearest policy K_t^{\star} to K_t that stabilizes the local model

$$K_t^\star = \underset{K}{\arg\min} \|K - K_t^s\|_2^2$$
 s.t. K stabilizes local linear model Linear matrix inequality

ullet When policy is learned online, **exploration** is guaranteed by the reference r_t

SPECIAL CASE: OUTPUT TRACKING

- $x_t = [y_t, y_{t-1}, \dots, y_{t-n_o}, u_{t-1}, u_{t-2}, \dots, u_{t-n_i}]$ $\Delta u_t = u_t - u_{t-1}$ control input increment
- \bullet Stage cost: $\parallel y_{t+1} r_t \parallel_{Qy}^2 + \parallel \Delta u_t \parallel_{R}^2 + \parallel q_{t+1} \parallel_{Q_q}^2$
- $\bullet \ \ \text{integral action dynamics} \ q_{t+1} = q_t + (y_{t+1} r_t) \\$

$$s_t = \begin{bmatrix} x_t \\ q_t \end{bmatrix}, \quad p_t = r_t.$$

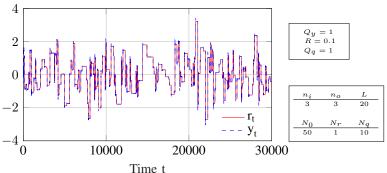
• Linear policy parametrization:

$$\pi_K(s_t, r_t) = -K^s \cdot s_t - K^r \cdot r_t, \qquad K = \begin{bmatrix} K^s \\ K^r \end{bmatrix}$$

EXAMPLE: MODEL-FREE LQR

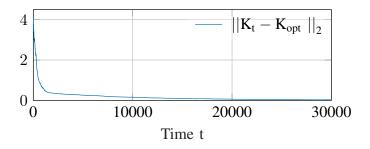
$$\left\{ \begin{array}{ll} x_{t+1} & = & \begin{bmatrix} -0.669 & 0.378 & 0.233 \\ -0.288 & -0.147 & -0.638 \\ -0.337 & 0.589 & 0.043 \end{bmatrix} x_t + \begin{bmatrix} -0.295 \\ -0.325 \\ -0.258 \end{bmatrix} u_t \\ y_t & = & \begin{bmatrix} -1.139 & 0.319 & -0.571 \end{bmatrix} x_t \end{array} \right. \quad \text{model is unknown}$$

Online tracking performance (no disturbance, $d_t = 0$):



LTI EXAMPLE

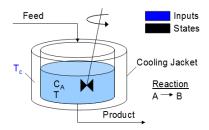
Evolution of the error $||K_t - K_{opt}||_2$:



$$K_{\text{SGD}} = [-1.255, 0.218, 0.652, 0.895, 0.050, 1.115, -2.186]$$

$$K_{\text{opt}} = [-1.257, 0.219, 0.653, 0.898, 0.050, 1.141, -2.196]$$

NONLINEAR EXAMPLE



model is unknown

Feed:

- concentration: 10kg mol/m^3
- temperature: $298.15\mathrm{K}$

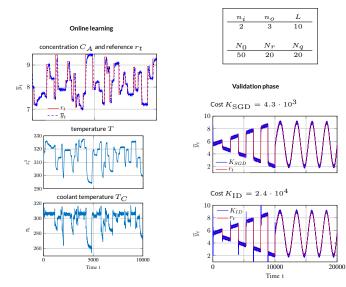
Continuously Stirred Tank Reactor (CSTR)[1]

$$T = \hat{T} + \eta_T$$
, $C_A = \hat{C_A} + \eta_C$, η_T , $\eta_C \sim \mathcal{N}(0, \sigma^2)$, $\sigma = 0.01$

$$Q_y = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad R = 0.1 \qquad Q_q = \begin{bmatrix} 0.01 & 0 \\ 0 & 0 \end{bmatrix}$$

[1] figure retrived from apmonitor.com

NONLINEAR EXAMPLE



Approach currently extended to multiple linear and nonlinear policies



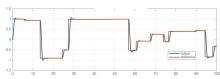
AUTO-TUNING

- Controller depends on a vector \boldsymbol{x} of parameters
- Parameters can be many things:
 - MPC weights, coefficients of the prediction model, horizons
 - Entries of covariance matrices in Kalman filter
 - Tolerances used in numerical solvers

- .

Define a performance index f over a closed-loop simulation or real experiment.
 For example:

$$f(x) = \sum_{t=0}^{T} \|y(t) - r(t)\|^2$$
 (tracking quality)



 Auto-tuning = find the best combination of parameters that solves the global optimization problem

$$\min_{x} f(x)$$

AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

- Solving $\min f(x)$ requires an optimization algorithm that, preferably:
 - does not require the gradient ∇F of f(x) (derivative-free or black-box optimization)

 does not get stuck on local minima (global optimization)

requires the fewest evaluations of the cost function f
 (which is expensive to evaluate)

AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

- Several derivative-free global optimization algorithms exist: (Rios, Sahidinis, 2013)
 - Lipschitzian-based partitioning techniques:
 - DIRECT (Divide in RECTangles) (Jones, 2001)
 - Multilevel Coordinate Search (MCS) (Huyer, Neumaier, 1999)
 - Response surface methods
 - Kriging (Matheron, 1967), DACE (Sacks et al., 1989)
 - Efficient global optimization (EGO) (Jones, Schonlau, Welch, 1998)
 - Bayesian optimization (Brochu, Cora, De Freitas, 2010)
 - Genetic algorithms (GA) (Holland, 1975)
 - Particle swarm optimization (PSO) (Kennedy, 2010)
 - .
- **New method**: inverse distance weighting + radial basis function surrogates (GLIS) (Bemporad, 2019)

AUTO-TUNING: MPC EXAMPLE

We want to auto-tune the linear MPC controller

min
$$\sum_{k=0}^{50-1} (y_{k+1} - r(t))^2 + (W^{\Delta u}(u_k - u_{k-1}))^2$$
s.t.
$$x_{k+1} = Ax_k + Bu_k$$

$$y_c = Cx_k$$

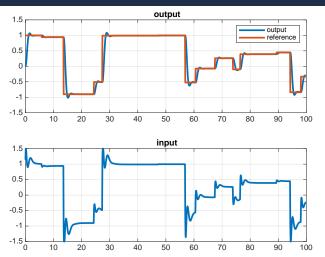
$$-1.5 \le u_k \le 1.5$$

$$u_k \equiv u_{N_u}, \forall k = N_u, \dots, N-1$$

- Calibration parameters: $x = [\log_{10} W^{\Delta u}, N_u]$
- Range: $-5 \le x_1 \le 3, 1 \le x_2 \le 50$
- Closed-loop performance objective:

$$f(x) = \sum_{t=0}^{T} (y(t) - r(t))^{2} + \frac{1}{2} (u(t) - u(t-1))^{2} + 2N_{u}$$

AUTO-TUNING: EXAMPLE



$$\bullet \ \ \mathsf{Result:} \ x^\star = [-0.2341, 2.3007]$$

$$W^{\Delta u}=0.5833, N_u=2$$

AUTO-TUNING: PROS AND CONS

- Pros:
 - \bullet Selection of calibration parameters x to test is fully automatic
 - Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)
 - \blacksquare Rather arbitrary performance index f(x) (tracking performance, response time, worst-case number of flops, ...)

(Piga, Forgione, Formentin, Bemporad, CDC 2019)

WeC23.4

- Cons:
 - \P Need to quantify an objective function f(x)
 - No room for qualitative assessments of closed-loop performance
 - Often objectives are multiple, not clear how to blend them in a single one
- Current research: semi-automatic tuning: an algorithm suggests new tuning params to try based on human assessments

LEARNING MPC FROM DATA - LESSON LEARNED SO FAR

- Model/policy structure includes real plant/optimal policy:
 - Sys-id + model-based synthesis and reinforcement learning lead to same policies
 - Reinforcement learning may require more data (model-based can instead "extrapolate" optimal actions)

- Model/policy structure does not include real plant/optimal policy:
 - optimal policy learned from data may be better than model-based optimal policy
 - when open-loop model is used as a tuning parameter, learned model can be quite different from best open-loop model that can be identified from the same data

CONCLUSIONS

- MPC is a universal control methodology:
 - different models (linear, nonlinear, hybrid, stochastic, ...)
 - optimize performance index subject to constraints
 - widely applicable to many domains (process industries, automotive, aerospace, smart grids, ...)

MPC research:

- 1. Linear, linear uncertain, explicit: mature theory
- 2. Hybrid, nonlinear, economic MPC: still a few open issues
- 3. Stochastic and robust nonlinear MPC: many open issues
- 4. Embedded optimization methods for MPC: anything new can be very useful
- 5. Data-driven MPC / Reinforcement learning for MPC: wide open area
- 6. System identification for MPC: a lot to "learn" from machine learning
- MPC technology: already mature for industry

THE END

- The contents presented in this workshop are an excerpt of **two PhD courses** held every year at IMT Lucca, Italy:
 - A. Bemporad Model Predictive Control

```
http://cse.lab.imtlucca.it/~bemporad/mpc course.html
```

April 1-3, 6-7, 2020

- M. Zanon - Numerical Methods for Optimal Control

https://mariozanon.wordpress.com/teaching/

May 25-29, 2020

Registration is free, but compulsory

