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Reinforcement Learning
model-free

optimal for the actual system

≈ sample-based stochastic optimal control

learning can be slow, expensive, unsafe

no stability guarantee (commonly based on DNN)

(Economic) Model Predictive Control
optimal for the nominal model

constraint satisfaction

can represent complex control policies

stability and recursive feasibility guarantees

Combine MPC and RL
simple MPC formulations as proxy for complicated ones

recover optimality, safety and stability for the true system
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The Basics

Assumption: the system is a Markov Decision Process (MDP)

state, action s, a

stochastic transition dynamics P[s+|s, a] ⇔ s+ = f (s, a,w)

scalar reward / stage cost L(s, a)

discount factor 0 < γ ≤ 1

System
P [s+|s, a]

Controller
a = πθ(s)

as

RL

θ

L(s, a)

Goal:

learn the optimal policy

using no prior knowledge, observe

reward only
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Main Concepts

Optimal policy:

π?(s) = arg min
a

L(s, a) + γE[V?(s+) | s, a]

Optimal value function:

V?(s) = L(s, π?(s)) + γE[V?(s+) | s, π?(s)]

If we know V?, we can compute π?

but only if we know the model

Optimal action-value function:

Q?(s, a) = L(s, a) + γE[V?(s+) | s, a]

= L(s, a) + γE
[

min
a+

Q?(s+, a+)

∣∣∣∣ s, a]
Optimal policy:

π?(s) = min
a

Q?(s, a)

If we know Q?, we know π?
(if we know how to minimise Q?)

LQR example:

P solves the Riccati equation

K? = (R + B>PB)−1(S> + B>PA)

π?(s) = −K?s

V?(s) = s>Ps + V0

Q?(s, a) =

[
s
a

]>
M

[
s
a

]
+ V0

M=

[
Q + A>PA S + A>PB
S> + B>PA R + B>PB

]
K? = M−1

aa Mas

If we learn M directly, we do not
need a model!

How can we evaluate V? and Q??
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How does it work?

Policy Evaluation

Monte Carlo
Temporal Difference

Policy Optimization

Greedy policy updates
ε-greedy
Exploration vs Exploitation

Abstract / generalize

Curse of dimensionality
Function approximation

Q-learning

Policy search
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Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a

Given policy π, what are Vπ,Qπ?

Vπ(s):

pick random s, increase counter N(s)

compute cost-to-go

Ci (s) =
∞∑
k=0

γkL(s, π(s))

empirical expectation:

V (s) ≈
N(s)∑
i=1

Ci (s, a)

N(s)

Recursive formulation:

V (s)← V (s) +
1

N(s)

(∑
Ci − V (s)

)
Alternative:

V (s)← V (s) + α
(∑

Ci − V (s)
)

Q(s, a):

N(s, a)

Ci (s, a) =

L(s, a) +
∞∑
k=1

γkL(s, π(s))

empirical expectation:

Q(s, a) ≈
N(s,a)∑
i=1

Ci (s, a)

N(s, a)
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Policy Evaluation - Temporal Difference

Remember: Vπ(s) = L(s, π(s)) + γE[Vπ(s+) | s, π(s)]

Idea of TD(0):

V (s)← V (s) + α
(
L(s, π(s)) + γV (s+)− V (s)

)

TD-target: L(s, π(s)) + γV (s+) is a proxy for infinite-horizon cost c

TD-error δ = L(s, π(s)) + γV (s+)− V (s)

Sample-based dynamic programming

learn before the episode ends

very efficient in Markov environments

We can do the same for the action-value function:

Q(s, a)← Q(s, a) + α
(
L(s, a) + γQ(s+, π(s+))− Q(s, a)

)

We can evaluate Vπ and Qπ, but how can we optimize them?
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Learning

Greedy policy improvement

model-based: π′(s) = arg mina L(s, a) + γE [V (s+)|s, a]

model-free: π′(s) = arg mina Q(s, a)

Problem:

keep acting on-policy, i.e., a = π(s)

how to ensure enough exploration?

Simplest idea: ε-greedy:

π(s) =

{
arg maxa Q(s, a) with p = 1− ε
aU{1,na} with p = ε

Theorem

For any ε-greedy policy π, the ε-greedy policy π′ is an improvement, i.e.,
Vπ′(s) ≤ Vπ(s)

In order to get optimality we need to be GLIE
Greedy in the limit with infinite exploration, e.g., ε-greedy with ε→ 0
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Q-Learning (basic version)

Update the action-value function as follows:

δ ← L(s, a) + γmin
a+

Q(s+, a+)− Q(s, a)

Q(s, a)← Q(s, a) + αδ

Curse of Dimensionality

in general: too many state-action pairs

need to generalize / extrapolate

Function Approximation

Features φ(s, a) and weights θ yield Qθ(s, a) = θ>φ(s, a). Weights update

δ ← L(s, a) + γmin
a+

Qθ(s+, a+)− Qθ(s, a)

θ ← θ + αδ∇θQθ(s, a)

this is a linear function approximation

deep neural networks are nonlinear
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Policy Search

Q-learning: fits E (Qθ − Q?)2

no guarantee that πθ is close to π?

what we want is minθ J(πθ) := E
∑∞

k=0 γ
kL(sk , πθ(sk))

Policy Search parametrizes πθ and directly minimizes J(πθ):

θ ← θ + α∇θJ

model-based: construct a model f and simulate forward in time:

J ≈ 1

B

B∑
i=0

N∑
k=0

γkL
(
s(i), πθ

(
s(i)
))

, s
(i)
+ = f

(
s(i), πθ

(
s(i)
)
,w
)

actor-critic (model-free): A(s, a) = Q(s, a)− V (s)

Deterministic policy : ∇θJ = ∇θπθ∇aAπθ ,

Stochastic policy : ∇θJ = ∇θ log πθAπθ ,

use, e.g., Q-learning for A, or V
if you are careful: convergence to local min of J(πθ)
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Main issues

Can we guarantee anything?

Safety
Stability
Optimality

Learning is potentially

Dangerous
Expensive
Slow

Prior knowledge is valuable

Why learning from scratch?

Can we use RL to improve existing controllers?

Retain stability and safety
Improve performance
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Optimal Control - Model Predictive Control (MPC)

use a model to predict the future

constraint enforcement

performance and stability guarantees

min
x,u

V f(xN) +
N−1∑
k=0

L(x , u)

s.t. x0 = s,

xk+1 = f (xk , uk),

h(xk , uk) ≤ 0,

xN ∈ Xf .

Optimality hinges on

quality of the model (how descriptive)

system identification (estimate the correct model parameters)

but then, if the model is not “perfect”

can we recover optimality through learning?

use MPC as function approximator
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Learn the true action-value function with MPC

inaccurate MPC model P[ŝ+|s, a] 6= P[s+|s, a]

Theorem [Gros, Zanon TAC2020]

Assume that the MPC parametrization (through θ) is rich enough.
Then, the exact V?, Q?, π? are recovered.

SysId and RL are “orthogonal”

RL cannot learn the true model

min
x,u

V f
θ (xN) +

N−1∑
k=0

Lθ(x , u)

s.t. x0 = s,

xk+1 = fθ(xk , uk),

hθ(xk , uk) ≤ 0,

xN ∈ Xf
θ.

Algorithmic framework:
[Zanon, Gros, Bemporad ECC2019]

Enforce Lθ,V
f
θ � 0

Can use condensed MPC formulation

Can use globalization techniques
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If Lθ(s, a) � 0, then Vθ(s) � 0 is a Lyapunov function

In RL we can have L(s, a) � 0⇒ V?(s) � 0

ENMPC theory:

if we rotate the cost we can have V?(s) = λ(s) + Vθ(s)

e.g., if 0 ≺ Lθ(s, a) = L(s, a)− λ(s) + λ(f (s, a))

Therefore, use

Vθ(s) = min
x,u

λθ(s) + V f
θ (xN) +

N−1∑
k=0

Lθ(x , u)

s.t. x0 = s,

xk+1 = fθ(xk , uk),
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xN ∈ Xf
θ.

Enforce stability with Lθ(s, a) � 0 and learn also λθ(s)
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Evaporation Process

Model and cost[
Ẋ2

Ṗ2

]
= f

([
X2

P2

]
,

[
P100

F200

])
, `(x , u) = something complicated.

Bounds

X2 ≥ 25 %, 40 kPa ≤ P2 ≤ 80 kPa,

P100 ≤ 400 kPa, F200 ≤ 400kg/min.

Nominal optimal steady state[
X2

P2

]
=

[
25 %

49.743 kPa

]
,

[
P100

F200

]
=

[
191.713 kPa

215.888 kg/min

]
.

Nominal Economic MPC gain:

large in the nominal case

about 1.5 % in the stochastic case: cannot even guarantee to have any
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Evaporation Process

Reinforcement learning based on

min
x,u,σ

λ(x0)︷ ︸︸ ︷
x>0 Hλx0 + h>λ x0 + cλ +γN

( V f (xN )︷ ︸︸ ︷
x>N HV f xN + h>V f xN + cV f

)
+

N−1∑
k=0

γk
([xk

uk

]>
H`

[
xk
uk

]
+ h>`

[
xk
uk

]
+ c` + σ>k H>σ σk + h>σ σk︸ ︷︷ ︸

`(xk ,uk ,σk )

)
s.t. x0 = s,

xk+1 = f (xk , uk) + cf ,

ul ≤ uk ≤ uu,

xl − σl
k ≤ xk ≤ xu + σu

k .

Parameters to learn: θ = {Hλ, hλ, cλ,HV f , hV f , cV f ,H`, h`, c`, cf , xl, xu}

Initial guess: θ̄ = {0, 0, 0,HV f , 0, 0,H`, 0, 0, 0, xl, xu}

HV f = I , H` = I , xl =

[
25

100

]
, xu =

[
100
80

]
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Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that π(s) ∈ S:

1 Penalize constraint violation

violations rare but cannot be excluded
ok when safety not at stake

2 Project policy onto feasible set:

π⊥θ (x) = arg min
u
‖u − πθ‖ s.t. u ∈ S

cannot explore outside S ⇒ constrained RL problem
Q-learning

projection must be done carefully
DPG: ∇θπ⊥θ ∇uAπ⊥ = ∇θπθM∇uAπ⊥

SPG: 1. draw a sample; 2. project

dirac-like structure on the boundary
use IP method for projection: ≈ Dirac, but continuous
∇θJ(π⊥θ ) = ∇θ log πθ∇uAπ⊥ evaluate score function gradient
on unprojected sample

3 Safety by construction
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Safe RL [Zanon, Gros (TAC,rev.)], [Gros, Zanon (TAC,rev.)]

Robust MPC as function approximator

Model used for data compression

Q-learning: no adaptation required

Actor-critic:
best possible performance
constraints pose technical difficulties

How to explore safely?

min
x,u

d>u0 + V f
θ (xN) +

N−1∑
k=0

Lθ(x , u)

s.t. x0 = s,

xk+1 = fθ(xk , uk),

hθ(xk , uk) ≤ 0,

xN ∈ Xf
θ.

Gradient d perturbs the MPC solution.
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Safe Q-learning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state[

X2

P2

]
=

[
25 %

49.743 kPa

]
,

[
P100

F200

]
=

[
191.713 kPa

215.888 kg/min

]
.

Satisfy X2 ≥ 25 robustly

Adjust uncertainty set representation

Adjust the RMPC cost

Adjust feedback K
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Safe Actor-Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

Distribution of d , a

Deterministic PG

∇θJ = ∇θπθ∇a Aπθ︸︷︷︸
Advantage Function

Bias in ∇aAπθ :

E[a− πθ(s)] 6= 0

Cov[a− πθ(s)]→ rank deficient

Stochastic PG

∇θJ = ∇θ log πθ δVπθ︸︷︷︸
TD Error

sampling ∇θ log πθ too expensive

if action infeasible: resample

gradient perturbation is the solution

∇J more expensive than DPG

deterministic: bias in advantage function gradient estimation

stochastic: πθ and its score function ∇θ log πθ is expensive if you don’t
use the right techniques because of the diracs stochastic you don’t need
any assumption. Deterministic you have some mild ones but they are
realistic though technical



MPC-based RL 21 / 27

Safe Actor-Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

Distribution of d , a

Deterministic PG

∇θJ = ∇θπθ∇a Aπθ︸︷︷︸
Advantage Function

Bias in ∇aAπθ :

E[a− πθ(s)] 6= 0

Cov[a− πθ(s)]→ rank deficient

Stochastic PG

∇θJ = ∇θ log πθ δVπθ︸︷︷︸
TD Error

sampling ∇θ log πθ too expensive

if action infeasible: resample

gradient perturbation is the solution

∇J more expensive than DPG

deterministic: bias in advantage function gradient estimation

stochastic: πθ and its score function ∇θ log πθ is expensive if you don’t
use the right techniques because of the diracs stochastic you don’t need
any assumption. Deterministic you have some mild ones but they are
realistic though technical



MPC-based RL 21 / 27

Safe Actor-Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

Distribution of d , a

Deterministic PG

∇θJ = ∇θπθ∇a Aπθ︸︷︷︸
Advantage Function

Bias in ∇aAπθ :

E[a− πθ(s)] 6= 0

Cov[a− πθ(s)]→ rank deficient

Stochastic PG

∇θJ = ∇θ log πθ δVπθ︸︷︷︸
TD Error

sampling ∇θ log πθ too expensive

if action infeasible: resample

gradient perturbation is the solution

∇J more expensive than DPG

deterministic: bias in advantage function gradient estimation

stochastic: πθ and its score function ∇θ log πθ is expensive if you don’t
use the right techniques because of the diracs stochastic you don’t need
any assumption. Deterministic you have some mild ones but they are
realistic though technical



MPC-based RL 21 / 27

Safe Actor-Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

Distribution of d , a

Deterministic PG

∇θJ = ∇θπθ∇a Aπθ︸︷︷︸
Advantage Function

Bias in ∇aAπθ :

E[a− πθ(s)] 6= 0

Cov[a− πθ(s)]→ rank deficient

Stochastic PG

∇θJ = ∇θ log πθ δVπθ︸︷︷︸
TD Error

sampling ∇θ log πθ too expensive

if action infeasible: resample

gradient perturbation is the solution

∇J more expensive than DPG

deterministic: bias in advantage function gradient estimation

stochastic: πθ and its score function ∇θ log πθ is expensive if you don’t
use the right techniques because of the diracs stochastic you don’t need
any assumption. Deterministic you have some mild ones but they are
realistic though technical



MPC-based RL 21 / 27

Safe Actor-Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

Distribution of d , a

Deterministic PG

∇θJ = ∇θπθ∇a Aπθ︸︷︷︸
Advantage Function

Bias in ∇aAπθ :

E[a− πθ(s)] 6= 0

Cov[a− πθ(s)]→ rank deficient

Stochastic PG

∇θJ = ∇θ log πθ δVπθ︸︷︷︸
TD Error

sampling ∇θ log πθ too expensive

if action infeasible: resample

gradient perturbation is the solution

∇J more expensive than DPG

deterministic: bias in advantage function gradient estimation

stochastic: πθ and its score function ∇θ log πθ is expensive if you don’t
use the right techniques because of the diracs stochastic you don’t need
any assumption. Deterministic you have some mild ones but they are
realistic though technical



MPC-based RL 22 / 27

MPC Sensitivities [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC,rev.)], [Gros, Zanon (TAC,rev.)]

θ ← θ + α
{
δ∇θQθ(s, a), ∇θπθ∇aAπθ , ∇θπθδπθ

}
Q-learning DPG SPG

Differentiate MPC [Gros, Zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute ∇θQθ(s, a), ∇θπθ(s), ∇aAπθ

Result from parametric optimization:

∇θQθ(s, a) = ∇θLθ, Lθ = Lagrangian of MPC

M∇θπθ(s) = ∂rθ
∂θ

, M, r = KKT matrix and residual

∇aAπθ = ν, ν = multiplier of u0 = a

Derivatives are cheap!

∇θLθ much cheaper than MPC

M already factorized inside MPC

ν is for free

Safe RL:

∇ constraint tightening

Actor-critic

Additional computations
DPG cheaper than SPG
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Real-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility:

NMPC can be computationally heavy

use RTI

Sensitivities:

formulae only hold at convergence

compute sensitivities of RTI QP

justified in a patfollowing framework

Evaporation process:

Similar results as fully converged NMPC

Gain ≈ 15− 20% over standard RTI
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Mixed-Integer Problems [Gros, Zanon IFAC2020,rev.]

Can we handle mixed-integer problems?

RL was born for integer problems

Apply, e.g., SPG: expensive

What about a combination of SPG and DPG?

separate continuous and integer parts

continuous: DPG

integer: SPG

Real system:

xk+1 = xk + uk ik + wk , wk ∼ U [0, 0.05]
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Conclusions

The goal:

simplify the computational aspects

provide safety and stability guarantees

achieve true optimality

self-tuning optimal controllers

We are not quite there yet! Challenges:

exploration vs exploitation (identifiability and persistent
excitation)

data noise and cost

can we combine SYSID and RL effectively?
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Thank you for your attention!
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