Data-driven Economic NMPC using

Reinforcement Learning

Mario Zanon, Alberto Bemporad

IMT Lucca

Reinforcement Learning 2/27

Reinforcement Learning
@ model-free
@ optimal for the actual system
@ = sample-based stochastic optimal control
@ learning can be slow, expensive, unsafe
@ no stability guarantee (commonly based on DNN)

Reinforcement Learning 2/27

Reinforcement Learning
@ model-free
@ optimal for the actual system
@ = sample-based stochastic optimal control
@ learning can be slow, expensive, unsafe
@ no stability guarantee (commonly based on DNN)

(Economic) Model Predictive Control
@ optimal for the nominal model
@ constraint satisfaction
@ can represent complex control policies
@ stability and recursive feasibility guarantees

Reinforcement Learning 2/27

Reinforcement Learning
@ model-free
@ optimal for the actual system
@ = sample-based stochastic optimal control
@ learning can be slow, expensive, unsafe
@ no stability guarantee (commonly based on DNN)

(Economic) Model Predictive Control
@ optimal for the nominal model
@ constraint satisfaction
@ can represent complex control policies
@ stability and recursive feasibility guarantees

Combine MPC and RL

@ simple MPC formulations as proxy for complicated ones
@ recover optimality, safety and stability for the true system

Reinforcement Learning 3/217

The Basics

@ state, action s, a
@ stochastic transition dynamics Plsi|s,a] <& sy =1(s,a,w)
Controller
a = mo(s)
s a
System
Pls.|s, 4]

Reinforcement Learning 3/217

The Basics

Assumption: the system is a Markov Decision Process (MDP)

@ state, action s, a
@ stochastic transition dynamics Plsi|s,a] <& sy =1(s,a,w)
Controller
a = mo(s)
s a
System
Pls.|s, 4]

Reinforcement Learning 3/217

The Basics

Assumption: the system is a Markov Decision Process (MDP)

@ state, action s, a
@ stochastic transition dynamics Plsi|s,a] <& sy =1(s,a,w)
@ scalar reward / stage cost L(s,a)

Controller

a = mo(s)

s a
System
Pls.|s, 4]

Reinforcement Learning 3/217

The Basics

Assumption: the system is a Markov Decision Process (MDP)

@ state, action s, a
@ stochastic transition dynamics Plsi|s,a] <& sy =1(s,a,w)
@ scalar reward / stage cost L(s,a)
@ discount factor 0<~y<1

Controller

a = mo(s)

S a
System
P[sy|s, a]

Reinforcement Learning 3/217

The Basics

Assumption: the system is a Markov Decision Process (MDP)

@ state, action s, a
@ stochastic transition dynamics Plsi|s,a] <& sy =1(s,a,w)
@ scalar reward / stage cost L(s,a)
@ discount factor 0<~y<1
’—er Controller
a = mo(s)
RL s a

System
I — A

L(s,a)

Reinforcement Learning 3/217

The Basics

Assumption: the system is a Markov Decision Process (MDP)

@ state, action s, a
@ stochastic transition dynamics Plsi|s,a] <& sy =1(s,a,w)
@ scalar reward / stage cost L(s,a)
@ discount factor 0<~y<1
’—er Controller
a = mo(s)
RL s a
I System
[52) P[sy|s, a]
Goal:

@ learn the optimal policy
@ using no prior knowledge, observe

@ reward only

Reinforcement Learning a/21

Main Concepts

Optimal policy:

Optimal value function:

Reinforcement Learning

Main Concepts
Optimal policy:
m(s) = argmin L(s, a) + vE[Vi(s1) | s, a]

Optimal value function:
Vi(s) = L(s, mu(s)) + vE[Vi(st) | 5, m(s)]

4/21

Reinforcement Learning a/21

Main Concepts
Optimal policy:
m(s) = argmin L(s, a) + vE[Vi(s1) | s, a]

Optimal value function:
Vi(s) = L(s, mu(s)) + vE[Vi(st) | 5, m(s)]

If we know V., we can compute 7, J

Reinforcement Learning a/21

Main Concepts
Optimal policy:
m(s) = argmin L(s, a) + vE[Vi(s1) | s, a]

Optimal value function:
Vi(s) = L(s, mu(s)) + vE[Vi(st) | 5, m(s)]

If we know V., we can compute 7,
but only if we know the model J

Reinforcement Learning

Main Concepts
Optimal policy:
m(s) = argmin L(s, a) + vE[Vi(s1) | s, a]

Optimal value function:
Vi(s) = L(s, mu(s)) + vE[Vi(st) | 5, m(s)]

If we know Vi, we can compute 7y
but only if we know the model J

Optimal action-value function:
Qi (s,a) = L(s,a) + YE[Vi(s+) | 5, 9]

= L(s,a) +E {n;in Qu(st,a4)

s, a}

4/21

Reinforcement Learning

Main Concepts
Optimal policy:
m(s) = argmin L(s, a) + vE[Vi(s1) | s, a]

Optimal value function:
Vi(s) = L(s, mu(s)) + vE[Vi(st) | 5, m(s)]

If we know Vi, we can compute 7y
but only if we know the model J

Optimal action-value function:
Qi (s,a) = L(s,a) + YE[Vi(s+) | 5, 9]

= L(s,a) +E {n;in Qu(st,a4)

s, a}

Optimal policy:
T (s) = min Qx(s, a)

4/21

Reinforcement Learning

Main Concepts
Optimal policy:
m(s) = argmin L(s, a) + vE[Vi(s1) | s, a]

Optimal value function:
Vi(s) = L(s, mu(s)) + vE[Vi(st) | 5, m(s)]

If we know Vi, we can compute 7y
but only if we know the model J

Optimal action-value function:
Qi (s,a) = L(s,a) + YE[Vi(s+) | 5, 9]

= L(s,a) +E {n;in Qu(st,a4)

s, a}

Optimal policy:
T (s) = min Qx(s, a)

If we know Qy, we know
(if we know how to minimise Q.) J

4/21

Reinforcement Learning

Main Concepts
Optimal policy:
m(s) = argmin L(s, a) + vE[Vi(s1) | s, a]

Optimal value function:
Vi(s) = L(s, mu(s)) + vE[Vi(st) | 5, m(s)]

If we know Vi, we can compute 7y
but only if we know the model \

Optimal action-value function:
Qi (s,a) = L(s,a) + YE[Vi(s+) | 5, 9]

=L(s,a)+E {n;in Qu(st,a4)

s, a}

Optimal policy:
T (s) = min Qx(s, a)

If we know Qy, we know
(if we know how to minimise Q.) J

4/21

LQR example:
P solves the Riccati equation
K, =(R+B"PB)*(S" + B'PA)
m(s) = —Kis
Vi(s)=s'Ps+ Vo

Reinforcement Learning a/21

Main Concepts

Optimal policy: LQR example:
m(s) = arg main L(s;a) +1E[Vu(si) [s, 4] P solves the Riccati equation
Optimal value function: K.,=(R+B"PB)Y'(S" +B'PA)
Vi(s) = L(s, m(s)) + YE[Vi(st) [5, 7 (s)] Tx(s) = —Kis

T
If we know Vi, we can compute 7y \ Vi(s)=s Ps+ Vo

but only if we know the model

.
Optimal action-value function: Q. (s,a) = {j M {j + W
Q.(s,3) = L(s,a) + VE[Vu(s:)| 5, 4]
= L(s,a) +~E {min Qu(st,a4) s, a}
: Ko = Mz Mas

Optimal policy:
T (s) = min Qx(s, a)

If we know Qy, we know
(if we know how to minimise Q.) ’

Reinforcement Learning

Main Concepts

Optimal policy:

.(s) = arg main L(s,a) +~E[Vi(st)]s, a]

Optimal value function:

Vi(s) = L(s, m(s)) + 1E[Vi(s+) [5,4 (s)]

If we know Vi, we can compute 7y
but only if we know the model

Optimal action-value function:
Qi (s,a) = L(s,a) + YE[Vi(s+) | 5, 9]

=L(s,a)+E {n;in Qu(st,a4)

Optimal policy:
T (s) = min Qx(s, a)

If we know Qy, we know
(if we know how to minimise Q.)

4/21

LQR example:
P solves the Riccati equation
K, =(R+B"PB)*(S" + B'PA)
m(s) = —Kis
Vi(s)=s'Ps+ Vo

Qu(s,a) = {j : M {j +W

If we learn M directly, we do not
need a model!

Reinforcement Learning

Main Concepts

Optimal policy:

.(s) = arg main L(s,a) +~E[Vi(st)]s, a]

Optimal value function:

Vi(s) = L(s, m(s)) + 1E[Vi(s+) [5,4 (s)]

If we know Vi, we can compute 7y
but only if we know the model

Optimal action-value function:
Qi (s,a) = L(s,a) + YE[Vi(s+) | 5, 9]

=L(s,a)+E {n;in Qu(st,a4)

Optimal policy:
T (s) = min Qx(s, a)

If we know Qy, we know
(if we know how to minimise Q.)

4/21

LQR example:
P solves the Riccati equation
K, =(R+B"PB)*(S" + B'PA)
m(s) = —Kis
Vi(s)=s'Ps+ Vo

Qu(s,a) = {j : M {j +W

If we learn M directly, we do not
need a model!

How can we evaluate V, and Q*?J

Reinforcement Learning 5/27

How does it work?

Reinforcement Learning 5/27

How does it work?

@ Policy Evaluation

e Monte Carlo
@ Temporal Difference

Reinforcement Learning 5/27

How does it work?

@ Policy Evaluation

e Monte Carlo
@ Temporal Difference

@ Policy Optimization
o Greedy policy updates
o c-greedy
e Exploration vs Exploitation

Reinforcement Learning 5/27

How does it work?

@ Policy Evaluation

e Monte Carlo
@ Temporal Difference

@ Policy Optimization
o Greedy policy updates
o c-greedy
e Exploration vs Exploitation

@ Abstract / generalize

o Curse of dimensionality
@ Function approximation

Reinforcement Learning

How does it work?

@ Policy Evaluation

e Monte Carlo
@ Temporal Difference

@ Policy Optimization
o Greedy policy updates
o c-greedy
e Exploration vs Exploitation

@ Abstract / generalize

o Curse of dimensionality
@ Function approximation

@ Q-learning

5/27

Reinforcement Learning

How does it work?

Policy Evaluation

e Monte Carlo
@ Temporal Difference

Policy Optimization
o Greedy policy updates
o c-greedy
e Exploration vs Exploitation

Abstract / generalize

o Curse of dimensionality
@ Function approximation

Q-learning

Policy search

5/27

Reinforcement Learning 6/27

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a

Reinforcement Learning 6/27

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a
Given policy 7, what are Vi, Q.7

Reinforcement Learning 6/27

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a
Given policy 7, what are Vi, Q.7

Vi (s):

Reinforcement Learning 6/27

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a
Given policy 7, what are Vi, Q.7

Vi (s):

@ pick random s, increase counter N(s)

Reinforcement Learning 6/27

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a
Given policy 7, what are Vi, Q.7

Vi (s):
@ pick random s, increase counter N(s)

@ compute cost-to-go

Gi(s) = S L(s, 7(5))

Reinforcement Learning 6/27

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a
Given policy 7, what are Vi, Q.7

Vi (s):
@ pick random s, increase counter N(s)

@ compute cost-to-go
Ci(s) = Y _*L(s,7(s))
k=0

@ empirical expectation:
N
) Ci(s, a)

V(s) = N(s)

i=1

Reinforcement Learning 6/27

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a
Given policy 7, what are Vi, Q.7

Vi (s): Q(s, a):
@ pick random s, increase counter N(s) @ N(s,a)
@ compute cost-to-go @ Ci(s,a) =
Ci(s) =D L(s,n(s)) L(s,a)+) _7*L(s,(s))
k=0 k=1
@ empirical expectation: @ empirical expectation:
N(s) N(s,a)
C,'(S, a) C,'(S a)
V(s) ~ —_— = !
()~ s Q(s.2)

N(s, a)

i=1 i=1

Reinforcement Learning 6/27

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a
Given policy 7, what are Vi, Q.7

Vi (s): Q(s, a):
@ pick random s, increase counter N(s) @ N(s,a)
@ compute cost-to-go @ Ci(s,a) =
Ci(s) =D L(s,n(s)) L(s,a)+) _7*L(s,(s))
k=0 k=1
@ empirical expectation: @ empirical expectation:
N(s) N(s,a)
C,'(S, a) C,'(S a)
V(s) ~ —_— = !
()~ s Q(s.2)

N(s, a)

i=1 i=1

Recursive formulation:

V(s) < V(s)+ ﬁ (X6 vis)

Reinforcement Learning 6/27

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a
Given policy 7, what are Vi, Q.7

Vi (s): Q(s, a):
@ pick random s, increase counter N(s) @ N(s,a)
@ compute cost-to-go @ Ci(s,a) =
Ci(s) =D L(s,n(s)) L(s,a)+ Y~ L(s,(s))
k=0 k=1
@ empirical expectation: @ empirical expectation:
N(s) N(s,a)
C,'(S, a) C,'(S a)
V(s) ~ —_— = !
)~ 2) 2™ 2 ysa)

Recursive formulation:

V(s) < V(s)+ ﬁ (X6 vis)

Alternative:

V(s) « V(s) +a (Z G — V(s))

Reinforcement Learning 7/21

Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]

Reinforcement Learning 7/21

Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]
Idea of TD(0):

V(s) < V(s) + a(L(s, 7(s)) + v V(sy) — V(s))

Reinforcement Learning 7/21

Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]
Idea of TD(0):

V(s) < V(s) + a(L(s, 7(s)) + v V(sy) — V(s))

@ TD-target: L(s,n(s)) + vV(ss+) is a proxy for infinite-horizon cost ¢

Reinforcement Learning

Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]
Idea of TD(0):

V(s) < V(s) + a(L(s, 7(s)) + v V(sy) — V(s))

@ TD-target: L(s,n(s)) + vV(ss+) is a proxy for infinite-horizon cost ¢
@ TD-error § = L(s,m(s)) +vV(sy) — V(s)

7/21

Reinforcement Learning
Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]
Idea of TD(0):

V(s) < V(s) + a(L(s, 7(s)) + v V(sy) — V(s))
@ TD-target: L(s,n(s)) + vV(ss+) is a proxy for infinite-horizon cost ¢

@ TD-error § = L(s,m(s)) +vV(sy) — V(s)

@ Sample-based dynamic programming

7/21

Reinforcement Learning

Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]
Idea of TD(0):

V(s) < V(s) + a(L(s, 7(s)) + v V(sy) — V(s))

@ TD-target: L(s,n(s)) + vV(ss+) is a proxy for infinite-horizon cost ¢
@ TD-error § = L(s,m(s)) +vV(sy) — V(s)
@ Sample-based dynamic programming

@ learn before the episode ends

7/21

Reinforcement Learning 7/21

Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]
Idea of TD(0):

V(s) < V(s) + a(L(s, 7(s)) + v V(sy) — V(s))

TD-target: L(s,n(s)) + yV/(st) is a proxy for infinite-horizon cost ¢
TD-error 6 = L(s,7(s)) + vV (s3) — V(s)
Sample-based dynamic programming

learn before the episode ends

very efficient in Markov environments

Reinforcement Learning 7/21

Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]
Idea of TD(0):

V(s) < V(s) + a(L(s, 7(s)) + v V(sy) — V(s))

@ TD-target: L(s,n(s)) + vV(ss+) is a proxy for infinite-horizon cost ¢
@ TD-error § = L(s,m(s)) +vV(sy) — V(s)

@ Sample-based dynamic programming

@ learn before the episode ends

°

very efficient in Markov environments

We can do the same for the action-value function:

Q(s,a) «+ Q(s,a) + a(L(s, a) + vQ(s4,7(s1)) — Q(s, a))

Reinforcement Learning 7/21

Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]
Idea of TD(0):

V(s) < V(s) + a(L(s, 7(s)) + v V(sy) — V(s))

@ TD-target: L(s,n(s)) + vV(ss+) is a proxy for infinite-horizon cost ¢
@ TD-error § = L(s,m(s)) +vV(sy) — V(s)

@ Sample-based dynamic programming

@ learn before the episode ends

°

very efficient in Markov environments

We can do the same for the action-value function:

Q(s,a) «+ Q(s,a) + a(L(s, a) + vQ(s4,7(s1)) — Q(s, a))

We can evaluate V; and Q-, but how can we optimize them?)

Reinforcement Learning 8/27

Learning

Reinforcement Learning 8/27

Learning
Greedy policy improvement
@ model-based: 7'(s) = argmin, L(s,a) +~E[V(s:)]s, a]

@ model-free: 7'(s) = argmin, Q(s,a)

Reinforcement Learning 8/27

Learning

Greedy policy improvement
@ model-based: 7'(s) = argmin, L(s,a) +~E[V(s:)]s, a]
@ model-free: 7'(s) = argmin, Q(s,a)

Problem:
@ keep acting on-policy, i.e., a = 7(s)

@ how to ensure enough exploration?

Reinforcement Learning 8/27

Learning
Greedy policy improvement
@ model-based: 7'(s) = argmin, L(s,a) +~E[V(s:)]s, a]
@ model-free: 7'(s) = argmin, Q(s, a)
Problem:
@ keep acting on-policy, i.e., a = 7(s)
@ how to ensure enough exploration?
Simplest idea: e-greedy:

(s) = argmax, Q(s,a) withp=1—c¢
- AU{1,n,} with p=c

For any e-greedy policy , the e-greedy policy 7’ is an improvement, i.e.,
Vo (s) < Vir(s)

Reinforcement Learning 8/27

Learning
Greedy policy improvement
@ model-based: 7'(s) = argmin, L(s,a) +~E[V(s:)]s, a]
@ model-free: 7'(s) = argmin, Q(s, a)
Problem:
@ keep acting on-policy, i.e., a = 7(s)
@ how to ensure enough exploration?
Simplest idea: e-greedy:

(s) = argmax, Q(s,a) withp=1—c¢
- AU{1,n,} with p=c

For any e-greedy policy , the e-greedy policy 7’ is an improvement, i.e.,
Vo (s) < Vir(s)

In order to get optimality we need to be GLIE

Greedy in the limit with infinite exploration, e.g., e-greedy with ¢ — 0

Reinforcement Learning 9/27

Q-Learning (basic version)

Reinforcement Learning 9/27

Q-Learning (basic version)
Update the action-value function as follows:

d+ L(s,a)+7~ n;in Q(st,a+) — Q(s, a)
Q(s,a) + Q(s,a)+ ad

Reinforcement Learning 0/27

Q-Learning (basic version)
Update the action-value function as follows:

0+ L(s,a)+~ rr;in Q(st,a+) — Q(s, a)
Q(s,a) « Q(s,a) +ad

Curse of Dimensionality

@ in general: too many state-action pairs

@ need to generalize / extrapolate

Reinforcement Learning 0/27

Q@-Learning (basic version)
Update the action-value function as follows:

d+ L(s,a)+7~ rr;in Q(st,a+) — Q(s, a)
Q(s,a) + Q(s,a) + ad

Curse of Dimensionality

@ in general: too many state-action pairs

@ need to generalize / extrapolate

Function Approximation

Features ¢(s, a) and weights 6 yield Qq(s,a) = 67 #(s, a). Weights update

0 < L(s,a) + vy min Qo(ss,at) — Qo(s, a)
at
0« 0+ a&VQQe(S, a)

@ this is a linear function approximation

@ deep neural networks are nonlinear

Reinforcement Learning 10/27

Policy Search

Q-learning: fits E(Qp — Qx)>
@ no guarantee that 7y is close to 7,
@ what we want is ming J(mp) :=E 352 v*L(sk, mo(s«))

Policy Search parametrizes mg and directly minimizes J(mg):

00+ aVel

@ model-based: construct a model f and simulate forward in time:

B N
1 k i i i i i
S EEE (). = ().)

@ actor-critic (model-free): A(s,a) = Q(s,a) — V(s)
Deterministic policy : Vod = VomgVaiArg,,
Stochastic policy : Vod = Vg logmoArg,

e use, e.g., Q-learning for A, or V
o if you are careful: convergence to local min of J(my)

Reinforcement Learning 11/27

Main issues

@ Can we guarantee anything?
o Safety
o Stability
o Optimality

Reinforcement Learning 11/27

Main issues

@ Can we guarantee anything?
o Safety
o Stability
o Optimality

@ Learning is potentially
@ Dangerous
e Expensive
o Slow

Reinforcement Learning 11/27

Main issues

@ Can we guarantee anything?
o Safety
o Stability
e Optimality

@ Learning is potentially
@ Dangerous
o Expensive
o Slow

Prior knowledge is valuable

@ Why learning from scratch?
@ Can we use RL to improve existing controllers?

@ Retain stability and safety
@ Improve performance

MPC-based RL 12/27
Optimal Control - Model Predictive Control (MPC)

@ use a model to predict the future
@ constraint enforcement
@ performance and stability guarantees

N—1

r?’ilp Viow) + Z L(x, u)

k=0
s.t. xo =5,
Xk+1 = f(Xk7 Uk),
h(xk, uk) <0,
XN € xt.

MPC-based RL 12/27
Optimal Control - Model Predictive Control (MPC)

@ use a model to predict the future
@ constraint enforcement
@ performance and stability guarantees

N—1

r?’ilp Viow) + Z L(x, u)

k=0
s.t. xo =5,
Xk+1 = f(Xk7 Uk),
h(xk, uk) <0,
XN € xt.
Optimality hinges on
@ quality of the model (how descriptive)
@ system identification (estimate the correct model parameters)

MPC-based RL 12/27
Optimal Control - Model Predictive Control (MPC)

@ use a model to predict the future
@ constraint enforcement
@ performance and stability guarantees

N—1

r?’ilp Viow) + Z L(x, u)

k=0
s.t. xo =5,
Xk+1 = f(Xk7 Uk),
h(xk, uk) <0,
XN € xt.
Optimality hinges on
@ quality of the model (how descriptive)
@ system identification (estimate the correct model parameters)

but then, if the model is not “perfect”

MPC-based RL 12/27
Optimal Control - Model Predictive Control (MPC)

@ use a model to predict the future
@ constraint enforcement
@ performance and stability guarantees

N—1

ryin Viow) + Z L(x, u)
. k=0

s.t. xo =5,
Xk+1 = f(Xk7 Uk),
h(xk, uk) <0,
XN € xt.
Optimality hinges on
@ quality of the model (how descriptive)
@ system identification (estimate the correct model parameters)
but then, if the model is not “perfect”
@ can we recover optimality through learning?

MPC-based RL 12/27
Optimal Control - Model Predictive Control (MPC)

@ use a model to predict the future
@ constraint enforcement
@ performance and stability guarantees

N—1

ryin Viow) + Z L(x, u)
. k=0

s.t. xo =5,
Xk+1 = f(Xk7 Uk),
h(Xk, uk) S 0,
XN € Xf.
Optimality hinges on
@ quality of the model (how descriptive)
@ system identification (estimate the correct model parameters)
but then, if the model is not “perfect”
@ can we recover optimality through learning?
@ use MPC as function approximator

MPC-based RL 12/27
Optimal Control - Model Predictive Control (MPC)

@ use a model to predict the future
@ constraint enforcement
@ performance and stability guarantees

N—1

Vi(s) := ryin V() + Z Lo(x, u)
“ k=0

s.t. xo =5,
Xip1 = Fo(xk, uk),
ho(xk, ux) <0,
XN € ng.
Optimality hinges on
@ quality of the model (how descriptive)
@ system identification (estimate the correct model parameters)
but then, if the model is not “perfect”
@ can we recover optimality through learning?
@ use MPC as function approximator

MPC-based RL 12/27
Optimal Control - Model Predictive Control (MPC)

@ use a model to predict the future
@ constraint enforcement
@ performance and stability guarantees
N—1

mo(s) := arg rQin Vi(xw) + Z Lo(x, u)
. k=0

s.t. xo=s,
Xer1 = Fo(xx, uk),
ho(x«, ux) <0,
XN € X§;
Optimality hinges on
@ quality of the model (how descriptive)
@ system identification (estimate the correct model parameters)
but then, if the model is not “perfect”
@ can we recover optimality through learning?
@ use MPC as function approximator

MPC-based RL 12/27
Optimal Control - Model Predictive Control (MPC)

@ use a model to predict the future
@ constraint enforcement

@ performance and stability guarantees

N—1
Qo(s,a) == Tin V() + Z Lo(x, u)
“ k=0

s.t. xo=s, U= a,
Xer1 = Fo(xx, uk),
he(xk, ux) <0,
XN € X%.
Optimality hinges on
@ quality of the model (how descriptive)
@ system identification (estimate the correct model parameters)
but then, if the model is not “perfect”
@ can we recover optimality through learning?
@ use MPC as function approximator

MPC-based RL 13/27

Learn the true action-value function with MPC

@ inaccurate MPC model P[8; s, a] # P[s4]s, a]

MPC-based RL 13/27

Learn the true action-value function with MPC

@ inaccurate MPC model P[8; s, a] # P[s4]s, a]

Theorem [Gros, Zanon TAC2020]

Assume that the MPC parametrization (through 6) is rich enough.
Then, the exact V., Q«, 7« are recovered.

MPC-based RL 13/27

Learn the true action-value function with MPC

@ inaccurate MPC model P[8; s, a] # P[s4]s, a]

Theorem [Gros, Zanon TAC2020]

Assume that the MPC parametrization (through 6) is rich enough.
Then, the exact V., Q«, 7« are recovered.

@ Sysld and RL are “orthogonal”
@ RL cannot learn the true model

MPC-based RL 13/27

Learn the true action-value function with MPC

@ inaccurate MPC model P[8; s, a] # P[s4]s, a]

Theorem [Gros, Zanon TAC2020]

Assume that the MPC parametrization (through 6) is rich enough.
Then, the exact V., Q«, 7« are recovered.

@ Sysld and RL are “orthogonal”
@ RL cannot learn the true model

N—1
. ¢
min Vo (xn) + Z Lo(x, u) Algorithmic framework:

X,u
k=
0 [Zanon, Gros, Bemporad ECC2019]

s.t. xo =s, ¢
@ Enforce Ly, Vy >0
Xi41 = To (X, ux),

ho(xk, ux) <0,
XN € Xg.

@ Can use condensed MPC formulation

@ Can use globalization techniques

MPC-based RL 14 /27
Economic MPC and RL

@ If Lo(s,a) > 0, then Vy(s) > 0 is a Lyapunov function
@ In RL we can have L(s,a) # 0= Vi(s) # 0

MPC-based RL 14 /27

Economic MPC and RL
@ If Lo(s,a) > 0, then Vy(s) > 0 is a Lyapunov function
@ In RL we can have L(s,a) # 0= Vi(s) # 0

ENMPC theory:
@ if we rotate the cost we can have V,(s) = A(s) + Vo(s)
@ eg., if0<Lo(s,a) = L(s,a) — A(s) + A(f(s, a))

MPC-based RL

Economic MPC and RL

@ If Lo(s,a) > 0, then Vy(s) > 0 is a Lyapunov function
@ In RL we can have L(s,a) # 0= Vi(s) # 0

ENMPC theory:
@ if we rotate the cost we can have V,(s) = A(s) + Vo(s)
@ eg., if0<Lo(s,a) = L(s,a) — A(s) + A(f(s, a))
Therefore, use
N—1

Vi(s) = TT No(s) + Vi () + Z Lo(x, u)

s.t. xo =5,
Xir1 = fo(Xk, k),
ho(xk, ux) < 0,
XN € ng.

14 /27

MPC-based RL

Economic MPC and RL

@ If Lo(s,a) > 0, then Vy(s) > 0 is a Lyapunov function
@ In RL we can have L(s,a) # 0= Vi(s) # 0

ENMPC theory:
@ if we rotate the cost we can have V,(s) = A(s) + Vo(s)
@ eg., if0<Lo(s,a) = L(s,a) — A(s) + A(f(s, a))
Therefore, use
N—1

Vi(s) = TT No(s) + Vi () + Z Lo(x, u)

s.t. xo =5,
Xir1 = fo(Xk, k),
ho(xk, ux) < 0,
XN € ng.

Enforce stability with Lg(s, a) > 0 and learn also Ag(s)

14 /27

MPC-based RL 15 /27

Evaporation Process

MPC-based RL 15 /27

Evaporation Process

Model and cost

[)Ffj =f <{),§j , {222]) , £(x, u) = something complicated.

MPC-based RL

Evaporation Process

Model and cost

[= ([5] - [2=]).

Bounds

X2 > 25%,
PIOO S 400 kPa7

£(x, u) = something complicated.

40kPa < P, < 80kPa,
ono S 400kg/min.

15/27

MPC-based RL 15 /27

Evaporation Process

Model and cost

[)Ffj =f <{),§j , {222]) , £(x, u) = something complicated.
Bounds
X2 > 25%, 40kPa < P, < 80kPa,
P1oo < 400kPa, Fa00 < 400kg/min.

Nominal optimal steady state

Xl _ Pioo] [191.713kPa
P2 o 49.743kPa|’ F200 o 215.888kg/min ’

MPC-based RL

Evaporation Process

Model and cost

[= ([5] - [2=]).

Bounds

X2 > 25%,
PIOO S 400 kPa7

Nominal optimal steady state

Xa2|
P,| 7 |49.743kPa|’

Nominal Economic MPC gain:

@ large in the nominal case

15/27

£(x, u) = something complicated.

40kPa < P, < 80kPa,
ono S 400kg/min.

P100 _ 191.713 kPa
F200 o 215.888kg/min ’

@ about 1.5 % in the stochastic case: cannot even guarantee to have any

MPC-based RL 16 /27

Evaporation Process

Reinforcement learning based on
A(xo) vE(xn)

min xOTH)\xo + h;I:XO + ¢ +ny<x,JvaxN + thN + cyr)

X,Uu,0

N—1 T
X X X
+;7k(|:ui:| H, |:Ui:| +h; |:uz:| +Cg+O'ZH;Jk+h;o'k)

£(xx 5,0 k)
s.t. xp =5,
Xk+1 = I‘-(Xk7 Uk) + cr,
u < uk <y,

1
X1 — ok < xx < Xu + Ok

MPC-based RL 16 /27

Evaporation Process

Reinforcement learning based on
A(xo) vE(xn)

min xOTH)\xo + h;I:XO + ¢ +ny<x,JvaxN + thN + cyr)

N—1 T
k(| Xk Xk T | Xk TyT T
+§7 (|:Uk:| HE |:Uk:|+hé |:Uk:|+C£+O'k HUO'k+hUO'k)
L%kt k)
s.t. xo=s,

Xk+1 = I‘-(Xk7 Uk) + cr,
u < uk <y,

1
X1 — ok < xx < Xu + Ok

Parameters to learn: 0 = {Hx, hx, cx, Hyt, hye, cye, He, he, ce, cry X1, Xu }

MPC-based RL 16 /27

Evaporation Process

Reinforcement learning based on

A(xo) vE(xn)

min xOTH)\xo + h;I:XO + ¢ +ny<x,JvaxN + thN + cyr)

X,Uu,0

N—1 T
k(| Xk Xk T | Xk TyT T
+§7 (|:Uk:| HE |:Uk:| +hg |:Uk:|+C£+O'k HUO'k+hUO'k>

£(xx 5,0 k)
s.t. xp =5,

Xk+1 = I‘-(Xk7 Uk) + cr,

u < uk < Uy,

1
X1 — ok < xx < Xu + Ok

Parameters to learn: 0 = {Hx, hx, cx, Hyt, hye, cye, He, he, ce, cry X1, Xu }
Initial guess: 0 =1{0,0,0, Hyt,0,0, H,0,0,0, x, X, }

25 100
H\/f:I, H[:I7)(1:|:100:|7 Xl,:|:80:|

MPC-based RL

Evaporation Process

8 10
x10%
6 — ——
4 .. - 1
-2]
0 2 4 6 8 10
x10%
20

ANt i oo PP

0 2 4

6

8

x10

10
4

4 6 8 10
x10*
4 I —— - —
.
3 £
Y
cyt
4 6 8 10
x10%

05
2 4 6 8 10
x10*
o
10° Py s R
10°
0 2 4 6 8 10
foam x10%

17/27

MPC-based RL

Evaporation Process

RL
2
N N
o ®©
—
—
—
[————
=
—
—_—
E—
1

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

14% gain

17/27

MPC-based RL 18 /27

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

MPC-based RL

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake

18/27

MPC-based RL 18 /27

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:
@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake
@ Project policy onto feasible set:

7y (x) = argmin ||u—mg|| st.ueS
u

MPC-based RL 18 /27

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:

7y (x) = argmin ||u—mg|| st.ueS
u

@ cannot explore outside S = constrained RL problem

MPC-based RL 18 /27

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:
7y (x) = argmin ||u—mg|| st.ueS
u
@ cannot explore outside S = constrained RL problem

o Q-learning
@ projection must be done carefully

MPC-based RL 18 /27

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:
7y (x) = argmin ||u—mg|| st.ueS
u
@ cannot explore outside S = constrained RL problem
o Q-learning

@ projection must be done carefully
o DPG: Vomg V,A, L = VemgMV, A, L

MPC-based RL

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

18/27

Ensure that 7(s) € S:

@ Penalize constraint violation

@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:
7y (x) = argmin ||u—mg|| st.ueS
u

@ cannot explore outside S = constrained RL problem

o Q-learning

@ projection must be done carefully
o DPG: Vomg V,A, L = VemgMV, A, L
°

SPG: 1. draw a sample; 2. project
o dirac-like structure on the boundary

MPC-based RL

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:

7y (x) = argmin ||u—mg|| st.ueS
u

@ cannot explore outside S = constrained RL problem
Q-learning
@ projection must be done carefully
DPG: Vomg VuA, L = VemgMV, A, L
SPG: 1. draw a sample; 2. project
o dirac-like structure on the boundary
@ use IP method for projection: ~ Dirac, but continuous

18/27

MPC-based RL 18 /27

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:

7y (x) = argmin ||u—mg|| st.ueS
u

@ cannot explore outside S = constrained RL problem
Q-learning
@ projection must be done carefully
DPG: Vomg VuA, L = VemgMV, A, L
SPG: 1. draw a sample; 2. project
o dirac-like structure on the boundary
@ use IP method for projection: ~ Dirac, but continuous
° VgJ(m;l) = VyglogmeV, A, L evaluate score function gradient
on unprojected sample

MPC-based RL 18 /27

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:

7y (x) = argmin ||u—mg|| st.ueS
u

@ cannot explore outside S = constrained RL problem
Q-learning
@ projection must be done carefully
DPG: Vomg VuA, L = VemgMV, A, L
SPG: 1. draw a sample; 2. project
o dirac-like structure on the boundary
@ use IP method for projection: ~ Dirac, but continuous
° VgJ(m;l) = VyglogmeV, A, L evaluate score function gradient
on unprojected sample

@ Safety by construction

MPC-based RL 19 /27

Safe RL [Zanon, Gros (TAC rev.)], [Gros, Zanon (TAC,rev.)]

@ Robust MPC as function approximator
@ Model used for data compression

MPC-based RL 19/27

Safe RL [Zanon, Gros (TAC rev.)], [Gros, Zanon (TAC,rev.)]

@ Robust MPC as function approximator
@ Model used for data compression

002
0015
05 001
0.005

-0.005
-0.5 -0.01

-0.015

-0.02 -
-1 -05 0 0.5 1 -0.02 -0.01 0 0.01 0.02

MPC-based RL 19/27

Safe RL [Zanon, Gros (TAC rev.)], [Gros, Zanon (TAC,rev.)]

@ Robust MPC as function approximator
@ Model used for data compression
@ Q-learning: no adaptation required

0.02
0.015
0.5 0.01

0.005

-0.005
-0.5 -0.01

-0.015

-0.02 -
-1 -05 0 0.5 1 -0.02 -0.01 0 0.01 0.02

MPC-based RL 10/27

Safe RL [Zanon, Gros (TAC rev.)], [Gros, Zanon (TAC,rev.)]
Robust MPC as function approximator

"]

@ Model used for data compression
@ Q-learning: no adaptation required
(]

Actor-critic:
@ best possible performance
@ constraints pose technical difficulties

0.02
0.015
0.01

0.005

-0.005
-0.01

-0.015

-0.02
1 -0.02 -0.01 0 0.01 0.02

MPC-based RL 19 /27

Safe RL [Zanon, Gros (TAC rev.)], [Gros, Zanon (TAC,rev.)]

@ Robust MPC as function approximator
@ Model used for data compression
@ -learning: no adaptation required

@ Actor-critic:
@ best possible performance
@ constraints pose technical difficulties

How to explore safely?
N—1

min d ' w + Vi (xn) + Z Lo(x, u)
X,u k:()
s.t. xo =5,

X1 = fo(xx, k),

ho(xk, ux) <0,

XN € Xg

Gradient d perturbs the MPC solution.

MPC-based RL

Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

X]
P,| = |49.743kPa)

|

Pi1oo
Faoo

|

|

191.713 kPa
215.888 kg/min

|

20/27

MPC-based RL

Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

X]
P,| = |49.743kPa)

@ Satisfy Xy > 25 robustly

|

Pi1oo
Faoo

|

|

191.713 kPa
215.888 kg/min

|

20/27

MPC-based RL 20/27

Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

Xl _ Pioo] [191.713kPa
P,| = |49.743kPa|’ Faoo| — |215.888kg/min| -
@ Satisfy Xy > 25 robustly

@ Adjust uncertainty set representation

MPC-based RL 20/27

Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

Xl _ Pioo] [191.713kPa
P,| = |49.743kPa|’ Faoo| — |215.888kg/min| -
@ Satisfy Xy > 25 robustly

@ Adjust uncertainty set representation
@ Adjust the RMPC cost

MPC-based RL 20/27

Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

Xl _ Pioo] [191.713kPa

Py| — |49.743kPal|’ Foo| ~ |215.888kg/min|
@ Satisfy Xy > 25 robustly
@ Adjust uncertainty set representation

@ Adjust the RMPC cost
@ Adjust feedback K

MPC-based RL

20/27
Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

X> _ 25% P1oo _ 191.713 kPa

Py| — |49.743kPal|’ Foo| ~ |215.888kg/min|
@ Satisfy Xy > 25 robustly
@ Adjust uncertainty set representation

@ Adjust the RMPC cost
@ Adjust feedback K

30 30

03
25 25
20 20 0.2
15 15

0 5 10 15 0 5 10 15 -08 06 -04 02 0 02 04 06
X, wy,

MPC-based RL 21/27

Safe ACtOI’—Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

> .
g 5 % 3 \\ Distribution of d, a
@ A\ \

up up up

MPC-based RL 21/27

Safe ACtOI’—Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

N AN
2) o % - \ Distribution of d, a
: s N 7 \
© N\ \
0] W

up

Deterministic PG

VeJ == vgﬂ'eva Aﬂ'g

Advantage Function

MPC-based RL 21/27

Safe ACtOI’—Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

N AN
2) o % - \ Distribution of d, a
: s N 7 \
© N\ \
0] W

up

Deterministic PG

VeJ == vgﬂ'eva Aﬂ'g

Advantage Function

Bias in V,Az,:
® E[a— mp(s)] #0
@ Covla — my(s)] — rank deficient

MPC-based RL 21/27

Safe ACtOI’—Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

™ N
2) o % - \ Distribution of d, a
: s N 7 \
© A \
0] W

up

Deterministic PG Stochastic PG
Vol = VooV, Anr, Vol = Vylogme &7,
~—
Advantage Function TD Error
Bias in V,Az,:

® E[a— mp(s)] #0
@ Covla — my(s)] — rank deficient

MPC-based RL 21/27

Safe ACtOI’—Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

N AN
\ o fd
i \\ . % s \\ Distribution of d, a
® N\ \
u u

1 up

Deterministic PG Stochastic PG
Vol = VooV, Anr, Vol = Vylogme &7,
~—
Advantage Function TD Error

@ sampling Vy log mg too expensive

Bias in V,Az,:
® E[a— mp(s)] 0 @ if action infeasible: resample
— T
@ Covl[a— my(s)] — rank deficient @ gradient perturbation is the solution

@ VJ more expensive than DPG

MPC-based RL 22/27

M PC SensitiVities [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC,rev.)], [Gros, Zanon (TAC,rev.)]

0 0+a{070Qu(s,2), Voo Vahn,, Vomodr,
Q-learning DPG SPG

MPC-based RL 22 /27

MPC sensitiVitieS [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC,rev.)], [Gros, Zanon (TAC,rev.)]

0+ 0+ a{éVg Qe(s, a), VgTreVaAﬂo, VgTrg(s-,.—G
Q-learning DPG SPG

lefel’entlate M PC [Gros, Zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute Vg Qo(s, a), Vomo(s), V.Ax,

MPC-based RL 22 /27

MPC SensitiVitieS [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC,rev.)], [Gros, Zanon (TAC,rev.)]

0+ 0+ CM{(;VQ Qe(s, a), Vgﬂ'gVaAﬂo, VgTrg(s.,.—e
Q-learning DPG SPG

Differentiate MPC (cros, zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute Vg Qo(s, a), Vomo(s), V.Ax,

Result from parametric optimization:

@ VyQo(s,a) = VoLy, Lo = Lagrangian of MPC
@ MVymy(s) = 68—’99, M, r = KKT matrix and residual

@ V., A, =v, v = multiplier of up = a

MPC-based RL 22 /27

MPC sensitiVitieS [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC,rev.)], [Gros, Zanon (TAC,rev.)]

0+ 0+ CM{&VQ Qe(s, a), Vgﬂ'evaA,ro, VgTrg(s-,.—e
Q-learning DPG SPG

lefel’entlate M PC [Gros, Zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute Vg Qo(s, a), Vomo(s), V.Ax,

Result from parametric optimization:

@ VyQo(s,a) = VoLy, Lo = Lagrangian of MPC
@ MVymy(s) = 66—’3, M, r = KKT matrix and residual
@ V., A, =v, v = multiplier of up = a

Derivatives are cheap!

@ VyLy much cheaper than MPC
@ M already factorized inside MPC

@ v is for free

MPC-based RL 22 /27

MPC SensitiVitieS [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC,rev.)], [Gros, Zanon (TAC,rev.)]

0+ 0+ CM{&VQ Qe(s, a), Vgﬂ'gVaAﬂo, VgTrg(s.,.—e
Q-learning DPG SPG

Differentiate MPC (cros, zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute Vg Qo(s, a), Vomo(s), V.Ax,

Result from parametric optimization:

@ VyQo(s,a) = VoLy, Lo = Lagrangian of MPC
@ MVymy(s) = %—’3, M, r = KKT matrix and residual
@ V., A, =v, v = multiplier of up = a

Safe RL:
@ V constraint tightening

Derivatives are cheap!

@ VyLy much cheaper than MPC

@ M already factorized inside MPC @ Actor-critic

O w s G Frae o Additional computations
o DPG cheaper than SPG

MPC-based RL 23 /27

ReaI-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility:

MPC-based RL 23 /27

ReaI-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility:
@ NMPC can be computationally heavy

MPC-based RL 23 /27

ReaI-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility:
@ NMPC can be computationally heavy
@ use RTI

MPC-based RL 23 /27

ReaI-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility:
@ NMPC can be computationally heavy
@ use RTI

Sensitivities:

@ formulae only hold at convergence

MPC-based RL 23 /27

ReaI-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility:
@ NMPC can be computationally heavy
@ use RTI

Sensitivities:
@ formulae only hold at convergence
@ compute sensitivities of RTI QP

@ justified in a patfollowing framework

MPC-based RL 23 /27

ReaI-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility:
@ NMPC can be computationally heavy
@ use RTI

Sensitivities:
@ formulae only hold at convergence
@ compute sensitivities of RTI QP

@ justified in a patfollowing framework

Evaporation process:

MPC-based RL 23 /27

ReaI-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility: ==
@ NMPC can be computationally heavy
@ use RTI

Sensitivities:
@ formulae only hold at convergence
@ compute sensitivities of RTI QP

@ justified in a patfollowing framework “w

Evaporation process:

@ Similar results as fully converged NMPC

“rn

MPC-based RL 23 /27

ReaI-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility: ==
@ NMPC can be computationally heavy
@ use RTI

Sensitivities:
@ formulae only hold at convergence
@ compute sensitivities of RTI QP

@ justified in a patfollowing framework “w

Evaporation process:
@ Similar results as fully converged NMPC

@ Gain ~ 15 — 20% over standard RTI T
-

MPC-based RL

Mixed-Integer Problems [cros, Zanon IFAC2020,rev]

Can we handle mixed-integer problems?
@ RL was born for integer problems

@ Apply, e.g., SPG: expensive

24 /27

MPC-based RL 24 /27

Mixed-Integer Problems [cros, Zanon IFAC2020,rev]

Can we handle mixed-integer problems?
@ RL was born for integer problems

@ Apply, e.g., SPG: expensive

What about a combination of SPG and DPG?
@ separate continuous and integer parts
@ continuous: DPG
@ integer: SPG

MPC-based RL 24 /27

Mixed-Integer Problems [cros, Zanon IFAC2020,rev]

Can we handle mixed-integer problems?
@ RL was born for integer problems

@ Apply, e.g., SPG: expensive

What about a combination of SPG and DPG?
@ separate continuous and integer parts
@ continuous: DPG
@ integer: SPG

Real system:

Xkt1 = Xk + Ukik + Wi, wi ~ U[0,0.05]

MPC-based RL 24 /27

Mixed-Integer Problems [cros, Zanon IFAC2020,rev]

Can we handle mixed-integer problems?
@ RL was born for integer problems

@ Apply, e.g., SPG: expensive

What about a combination of SPG and DPG?
@ separate continuous and integer parts
@ continuous: DPG
@ integer: SPG

Real system:

Xk+1 = Xk + Uklk + Wk, Wy ~ L{[0,0.0S]

3 1 ; D[— . C

03 s 0 u l Pli=1]s.6] s)
- 005 025 08 04
015 0.1 02 06 02
o1 0.15 o
005 015 04 02

01
o 0 0 04
-0.05 0.05 -0.6
0.1 o ° -08
0 w40 & 0 20 % 40 %0 0 20 %0 40 %0 s o o i ; o o o5 i
time time time K s

MPC-based RL 25 /27

Conclusions

The goal:
@ simplify the computational aspects
@ provide safety and stability guarantees
@ achieve true optimality
@ self-tuning optimal controllers

MPC-based RL 25 /27

Conclusions

The goal:
@ simplify the computational aspects
@ provide safety and stability guarantees
@ achieve true optimality
@ self-tuning optimal controllers

We are not quite there yet!

MPC-based RL 25 /27

Conclusions

The goal:
@ simplify the computational aspects
@ provide safety and stability guarantees
@ achieve true optimality
@ self-tuning optimal controllers

We are not quite there yet! Challenges:
@ exploration vs exploitation (identifiability and persistent
excitation)
@ data noise and cost
@ can we combine SYSID and RL effectively?

MPC-based RL 26 /27

Our contribution

o

2]

Gros, S. and Zanon, M. Data-Driven Economic NMPC using
Reinforcement Learning. |IEEE Transactions on Automatic Control,
2020, in press.

Zanon, M., Gros, S., and Bemporad, A. Practical Reinforcement
Learning of Stabilizing Economic MPC. European Control Conference
2019

© Zanon, M. and Gros, S. Safe Reinforcement Learning Using Robust

MPC. Transaction on Automatic Control, (under review).

© Gros, S. and Zanon, M. Safe Reinforcement Learning Based on Robust

o

o

MPC and Policy Gradient Methods IEEE Transactions on Automatic
Control, (under review).

Gros, S., Zanon, M, and Bemporad, A. Safe Reinforcement Learning
via Projection on a Safe Set: How to Achieve Optimality? IFAC
World Congress, 2020 (submitted)

Gros, S. and Zanon, M. Reinforcement Learning for Mixed-Integer
Problems Based on MPC. IFAC World Congress, 2020 (submitted)

27 /27

Thank you for your attention!

	Reinforcement Learning
	MPC-based RL

