

Data-driven Economic NMPC using Reinforcement Learning

Mario Zanon, Alberto Bemporad

Reinforcement Learning

- model-free
- optimal for the actual system
- $\bullet \ \approx {\rm sample-based \ stochastic \ optimal \ control}$
- learning can be slow, expensive, unsafe
- no stability guarantee (commonly based on DNN)

Reinforcement Learning

- model-free
- optimal for the actual system
- $\bullet \ \approx {\rm sample-based \ stochastic \ optimal \ control}$
- learning can be slow, expensive, unsafe
- no stability guarantee (commonly based on DNN)

(Economic) Model Predictive Control

- optimal for the nominal model
- constraint satisfaction
- can represent complex control policies
- stability and recursive feasibility guarantees

Reinforcement Learning

- model-free
- optimal for the actual system
- $\bullet \ \approx {\rm sample-based \ stochastic \ optimal \ control}$
- learning can be slow, expensive, unsafe
- no stability guarantee (commonly based on DNN)

(Economic) Model Predictive Control

- optimal for the nominal model
- constraint satisfaction
- can represent complex control policies
- stability and recursive feasibility guarantees

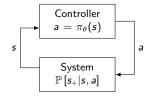
Combine MPC and RL

- simple MPC formulations as proxy for complicated ones
- recover optimality, safety and stability for the true system

The Basics

- state, action
- stochastic transition dynamics

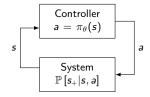
```
s, a\mathbb{P}[s_+|s,a] \iff s_+ = f(s,a,w)
```



The Basics

Assumption: the system is a Markov Decision Process (MDP)

- state, action s, a
- stochastic transition dynamics $\mathbb{P}[s_+|s,a] \Leftrightarrow s_+ = f(s,a,w)$

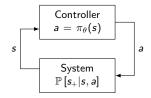


The Basics

Assumption: the system is a Markov Decision Process (MDP)

- state, action s, a stochastic transition dynamics $\mathbb{P}[s_+|s,a] \quad \Leftrightarrow \quad s_+ = f(s,a,w)$
- scalar reward / stage cost

L(s, a)

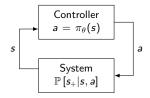


The Basics

Assumption: the system is a Markov Decision Process (MDP)

- state, action
- stochastic transition dynamics
- scalar reward / stage cost
- discount factor

 $egin{aligned} s, \ a & & & & \ \mathbb{P}[s_+|s,a] & \Leftrightarrow & s_+=f(s,a,w) & & \ L(s,a) & & & \ 0 < \gamma \leq 1 & & & \ \end{aligned}$

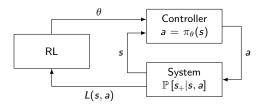


The Basics

Assumption: the system is a Markov Decision Process (MDP)

- state, action s, a
 stochastic transition dynamics $\mathbb{P}[s_+|s,a]$
- scalar reward / stage cost
- discount factor

s, a $\mathbb{P}[s_+|s,a] \quad \Leftrightarrow \quad s_+ = f(s,a,w)$ L(s,a) $0 < \gamma \leq 1$

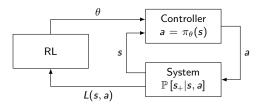


The Basics

Assumption: the system is a Markov Decision Process (MDP)

- state, actions, a• stochastic transition dynamics $\mathbb{P}[s_+|s,a] \iff s_+ =$
- $\bullet \ \ {\rm scalar \ reward} \ / \ {\rm stage \ cost}$
- discount factor

s, a $\mathbb{P}[s_+|s,a] \quad \Leftrightarrow \quad s_+ = f(s,a,w)$ L(s,a) $0 < \gamma \leq 1$



Goal:

- learn the optimal policy
- using no prior knowledge, observe
 - reward only

Optimal policy:

Optimal value function:

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

$$V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, \pi_{\star}(s)]$$

Main Concepts

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

 $V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, \pi_{\star}(s)]$

If we know V_\star , we can compute π_\star

Main Concepts

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

$$V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, \pi_{\star}(s)]$$

If we know V_{\star} , we can compute π_{\star} but only if we know the model

Main Concepts

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

 $V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, \pi_{\star}(s)]$

If we know $V_{\star},$ we can compute π_{\star} but only if we know the model

Optimal action-value function:

$$Q_{\star}(s, a) = L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) | s, a]$$
$$= L(s, a) + \gamma \mathbb{E}\left[\min_{a_{+}} Q_{\star}(s_{+}, a_{+}) | s, a\right]$$

Main Concepts

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

 $V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, \pi_{\star}(s)]$

If we know $V_\star,$ we can compute π_\star but only if we know the model

Optimal action-value function:

$$Q_{\star}(s, a) = L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) | s, a]$$
$$= L(s, a) + \gamma \mathbb{E}\left[\min_{a_{+}} Q_{\star}(s_{+}, a_{+}) | s, a\right]$$

Optimal policy:

$$\pi_\star(s) = \min_a Q_\star(s,a)$$

Main Concepts

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

 $V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, \pi_{\star}(s)]$

If we know $V_{\star},$ we can compute π_{\star} but only if we know the model

Optimal action-value function:

$$Q_{\star}(s, a) = L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) | s, a]$$
$$= L(s, a) + \gamma \mathbb{E}\left[\min_{a_{+}} Q_{\star}(s_{+}, a_{+}) | s, a\right]$$

Optimal policy:

$$\pi_\star(s) = \min_a Q_\star(s,a)$$

If we know Q_{\star} , we know π_{\star} (if we know how to minimise Q_{\star})

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

$$V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, \pi_{\star}(s)]$$

If we know $V_{\star},$ we can compute π_{\star} but only if we know the model

Optimal action-value function:

$$Q_{\star}(s, a) = L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) | s, a]$$
$$= L(s, a) + \gamma \mathbb{E}\left[\min_{a_{+}} Q_{\star}(s_{+}, a_{+}) | s, a\right]$$

Optimal policy:

$$\pi_{\star}(s) = \min_{a} Q_{\star}(s, a)$$

If we know Q_{\star} , we know π_{\star} (if we know how to minimise Q_{\star}) LQR example:

P solves the Riccati equation $K_* = (R + B^\top PB)^{-1}(S^\top + B^\top PA)$ $\pi_*(s) = -K_*s$ $V_*(s) = s^\top Ps + V_0$

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

$$V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, \pi_{\star}(s)]$$

If we know $V_{\star},$ we can compute π_{\star} but only if we know the model

Optimal action-value function:

$$Q_{\star}(s, a) = L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) | s, a]$$
$$= L(s, a) + \gamma \mathbb{E}\left[\min_{a_{+}} Q_{\star}(s_{+}, a_{+}) \middle| s, a\right]$$

Optimal policy:

$$\pi_{\star}(s) = \min_{a} Q_{\star}(s, a)$$

If we know Q_{\star} , we know π_{\star} (if we know how to minimise Q_{\star}) LQR example:

P solves the Riccati equation $K_{\star} = (R + B^{\top} P B)^{-1} (S^{\top} + B^{\top} P A)$ $\pi_{\star}(s) = -K_{\star}s$ $V_{\star}(s) = s^{\top} P s + V_0$ $Q_{\star}(s,a) = \begin{bmatrix} s \\ a \end{bmatrix}^{\perp} M \begin{bmatrix} s \\ a \end{bmatrix} + V_0$ $M = \begin{bmatrix} Q + A^{\top} P A & S + A^{\top} P B \\ S^{\top} + B^{\top} P A & R + B^{\top} P B \end{bmatrix}$ $K_{+} = M_{22}^{-1} M_{23}$

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

$$V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, \pi_{\star}(s)]$$

If we know $V_{\star},$ we can compute π_{\star} but only if we know the model

Optimal action-value function:

$$Q_{\star}(s, a) = L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, a]$$
$$= L(s, a) + \gamma \mathbb{E}\left[\min_{a_{+}} Q_{\star}(s_{+}, a_{+}) \mid s, a\right]$$

Optimal policy:

$$\pi_{\star}(s) = \min_{a} Q_{\star}(s, a)$$

If we know Q_{\star} , we know π_{\star} (if we know how to minimise Q_{\star}) LQR example:

P solves the Riccati equation $K_{\star} = (R + B^{\top} P B)^{-1} (S^{\top} + B^{\top} P A)$ $\pi_{\star}(s) = -K_{\star}s$ $V_{\star}(s) = s^{\top} P s + V_0$ $Q_{\star}(s,a) = \begin{bmatrix} s \\ a \end{bmatrix}^{\perp} M \begin{bmatrix} s \\ a \end{bmatrix} + V_0$ $M = \begin{bmatrix} Q + A^{\top} P A & S + A^{\top} P B \\ S^{\top} + B^{\top} P A & R + B^{\top} P B \end{bmatrix}$ $K_{+} = M_{22}^{-1} M_{23}$

If we learn M directly, we do not need a model!

Optimal policy:

$$\pi_{\star}(s) = \arg\min_{a} L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \,|\, s, a]$$

Optimal value function:

$$V_{\star}(s) = L(s, \pi_{\star}(s)) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, \pi_{\star}(s)]$$

If we know $V_{\star},$ we can compute π_{\star} but only if we know the model

Optimal action-value function:

$$Q_{\star}(s, a) = L(s, a) + \gamma \mathbb{E}[V_{\star}(s_{+}) \mid s, a]$$
$$= L(s, a) + \gamma \mathbb{E}\left[\min_{a_{+}} Q_{\star}(s_{+}, a_{+}) \mid s, a\right]$$

Optimal policy:

$$\pi_{\star}(s) = \min_{a} Q_{\star}(s, a)$$

If we know Q_{\star} , we know π_{\star} (if we know how to minimise Q_{\star}) LQR example:

P solves the Riccati equation $K_{\star} = (R + B^{\top} P B)^{-1} (S^{\top} + B^{\top} P A)$ $\pi_{\star}(s) = -K_{\star}s$ $V_{\star}(s) = s^{\top} P s + V_0$ $Q_{\star}(s,a) = \begin{bmatrix} s \\ a \end{bmatrix}^{\perp} M \begin{bmatrix} s \\ a \end{bmatrix} + V_0$ $M = \begin{bmatrix} Q + A^{\top} P A & S + A^{\top} P B \\ S^{\top} + B^{\top} P A & R + B^{\top} P B \end{bmatrix}$ $K_{+} = M_{22}^{-1} M_{23}$

If we learn M directly, we do not need a model!

How can we evaluate V_{\star} and Q_{\star} ?

- Policy Evaluation
 - Monte Carlo
 - Temporal Difference

- Policy Evaluation
 - Monte Carlo
 - Temporal Difference
- Policy Optimization
 - Greedy policy updates
 - ϵ -greedy
 - Exploration vs Exploitation

- Policy Evaluation
 - Monte Carlo
 - Temporal Difference
- Policy Optimization
 - Greedy policy updates
 - ϵ -greedy
 - Exploration vs Exploitation
- Abstract / generalize
 - Curse of dimensionality
 - Function approximation

- Policy Evaluation
 - Monte Carlo
 - Temporal Difference
- Policy Optimization
 - Greedy policy updates
 - ϵ -greedy
 - Exploration vs Exploitation
- Abstract / generalize
 - Curse of dimensionality
 - Function approximation
- Q-learning

- Policy Evaluation
 - Monte Carlo
 - Temporal Difference
- Policy Optimization
 - Greedy policy updates
 - ϵ -greedy
 - Exploration vs Exploitation
- Abstract / generalize
 - Curse of dimensionality
 - Function approximation
- Q-learning
- Policy search

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a Given policy π , what are V_{π}, Q_{π} ?

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a Given policy π , what are V_{π} , Q_{π} ?

 $V_{\pi}(s)$:

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a Given policy π , what are V_{π} , Q_{π} ?

 $V_{\pi}(s)$:

• pick random s, increase counter N(s)

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a Given policy π , what are V_{π} , Q_{π} ?

 $V_{\pi}(s)$:

• pick random s, increase counter N(s)

$$C_i(s) = \sum_{k=0}^{\infty} \gamma^k L(s, \pi(s))$$

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a Given policy π , what are V_{π} , Q_{π} ?

 $V_{\pi}(s)$:

- pick random s, increase counter N(s)
- compute cost-to-go

$$C_i(s) = \sum_{k=0}^{\infty} \gamma^k L(s, \pi(s))$$

• empirical expectation:

$$V(s) \approx \sum_{i=1}^{N(s)} \frac{C_i(s,a)}{N(s)}$$

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a Given policy π , what are V_{π} , Q_{π} ?

 $V_{\pi}(s)$:

• pick random s, increase counter N(s)

compute cost-to-go

$$C_i(s) = \sum_{k=0}^{\infty} \gamma^k L(s, \pi(s))$$

• empirical expectation:

$$V(s) pprox \sum_{i=1}^{N(s)} rac{C_i(s,a)}{N(s)}$$

Q(s, a):

• N(s, a)• $C_i(s, a) = L(s, a) + \sum_{k=1}^{\infty} \gamma^k L(s, \pi(s))$

• empirical expectation:

$$Q(s,a) \approx \sum_{i=1}^{N(s,a)} \frac{C_i(s,a)}{N(s,a)}$$

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a Given policy π , what are V_{π} , Q_{π} ?

 $V_{\pi}(s)$:

• pick random s, increase counter N(s)

compute cost-to-go

$$C_i(s) = \sum_{k=0}^{\infty} \gamma^k L(s, \pi(s))$$

• empirical expectation:

$$V(s) pprox \sum_{i=1}^{N(s)} rac{C_i(s,a)}{N(s)}$$

Recursive formulation:

$$V(s) \leftarrow V(s) + rac{1}{N(s)} \left(\sum C_i - V(s)\right)$$

Q(s, a):

0

• N(s, a)• $C_i(s, a) = L(s, a) + \sum_{k=1}^{\infty} \gamma^k L(s, \pi(s))$

• empirical expectation:

$$Q(s, a) \approx \sum_{i=1}^{N(s,a)} \frac{C_i(s, a)}{N(s, a)}$$

Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a Given policy π , what are V_{π} , Q_{π} ?

 $V_{\pi}(s)$:

• pick random s, increase counter N(s)

compute cost-to-go

$$C_i(s) = \sum_{k=0}^{\infty} \gamma^k L(s, \pi(s))$$

• empirical expectation:

$$V(s) pprox \sum_{i=1}^{N(s)} rac{C_i(s,a)}{N(s)}$$

Recursive formulation:

$$V(s) \leftarrow V(s) + \frac{1}{N(s)} \left(\sum C_i - V(s)\right)$$

Alternative:

$$V(s) \leftarrow V(s) + \alpha \left(\sum C_i - V(s)\right)$$

Q(s, a):

• N(s, a)• $C_i(s, a) = L(s, a) + \sum_{k=1}^{\infty} \gamma^k L(s, \pi(s))$

• empirical expectation:

$$Q(s, a) \approx \sum_{i=1}^{N(s,a)} \frac{C_i(s, a)}{N(s, a)}$$

Policy Evaluation - Temporal Difference

Policy Evaluation - Temporal Difference

$$V(s) \leftarrow V(s) + \alpha \Big(L(s, \pi(s)) + \gamma V(s_+) - V(s) \Big)$$

Policy Evaluation - Temporal Difference

Remember: $V_{\pi}(s) = L(s, \pi(s)) + \gamma \mathbb{E}[V_{\pi}(s_{+}) | s, \pi(s)]$ Idea of TD(0):

$$V(s) \leftarrow V(s) + \alpha \Big(L(s, \pi(s)) + \gamma V(s_+) - V(s) \Big)$$

• TD-target: $L(s, \pi(s)) + \gamma V(s_+)$ is a proxy for infinite-horizon cost c

Policy Evaluation - Temporal Difference

$$V(s) \leftarrow V(s) + \alpha \Big(L(s, \pi(s)) + \gamma V(s_+) - V(s) \Big)$$

- TD-target: $L(s, \pi(s)) + \gamma V(s_+)$ is a proxy for infinite-horizon cost c
- TD-error $\delta = L(s, \pi(s)) + \gamma V(s_+) V(s)$

Policy Evaluation - Temporal Difference

$$V(s) \leftarrow V(s) + \alpha \Big(L(s, \pi(s)) + \gamma V(s_+) - V(s) \Big)$$

- TD-target: $L(s, \pi(s)) + \gamma V(s_+)$ is a proxy for infinite-horizon cost c
- TD-error $\delta = L(s, \pi(s)) + \gamma V(s_+) V(s)$
- Sample-based dynamic programming

Policy Evaluation - Temporal Difference

$$V(s) \leftarrow V(s) + \alpha \Big(L(s, \pi(s)) + \gamma V(s_+) - V(s) \Big)$$

- TD-target: $L(s, \pi(s)) + \gamma V(s_+)$ is a proxy for infinite-horizon cost c
- TD-error $\delta = L(s, \pi(s)) + \gamma V(s_+) V(s)$
- Sample-based dynamic programming
- learn before the episode ends

Policy Evaluation - Temporal Difference

$$V(s) \leftarrow V(s) + \alpha \Big(L(s, \pi(s)) + \gamma V(s_+) - V(s) \Big)$$

- TD-target: $L(s, \pi(s)) + \gamma V(s_+)$ is a proxy for infinite-horizon cost c
- TD-error $\delta = L(s, \pi(s)) + \gamma V(s_+) V(s)$
- Sample-based dynamic programming
- learn before the episode ends
- very efficient in Markov environments

Policy Evaluation - Temporal Difference

Remember: $V_{\pi}(s) = L(s, \pi(s)) + \gamma \mathbb{E}[V_{\pi}(s_{+}) | s, \pi(s)]$ Idea of TD(0):

$$V(s) \leftarrow V(s) + \alpha \Big(L(s, \pi(s)) + \gamma V(s_+) - V(s) \Big)$$

- TD-target: $L(s, \pi(s)) + \gamma V(s_+)$ is a proxy for infinite-horizon cost c
- TD-error $\delta = L(s, \pi(s)) + \gamma V(s_+) V(s)$
- Sample-based dynamic programming
- learn before the episode ends
- very efficient in Markov environments

We can do the same for the action-value function:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \Big(L(s, a) + \gamma Q(s_+, \pi(s_+)) - Q(s, a) \Big)$$

Policy Evaluation - Temporal Difference

Remember: $V_{\pi}(s) = L(s, \pi(s)) + \gamma \mathbb{E}[V_{\pi}(s_{+}) | s, \pi(s)]$ Idea of TD(0):

$$V(s) \leftarrow V(s) + \alpha \Big(L(s, \pi(s)) + \gamma V(s_+) - V(s) \Big)$$

- TD-target: $L(s, \pi(s)) + \gamma V(s_+)$ is a proxy for infinite-horizon cost c
- TD-error $\delta = L(s, \pi(s)) + \gamma V(s_+) V(s)$
- Sample-based dynamic programming
- learn before the episode ends
- very efficient in Markov environments

We can do the same for the action-value function:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \Big(L(s, a) + \gamma Q(s_+, \pi(s_+)) - Q(s, a) \Big)$$

We can evaluate V_{π} and Q_{π} , but how can we optimize them?

Learning

Learning

Greedy policy improvement

- model-based: $\pi'(s) = \arg \min_a L(s, a) + \gamma \mathbb{E} [V(s_+)|s, a]$
- model-free: $\pi'(s) = \arg \min_a Q(s, a)$

Learning

Greedy policy improvement

- model-based: $\pi'(s) = \arg \min_a L(s, a) + \gamma \mathbb{E} [V(s_+)|s, a]$
- model-free: $\pi'(s) = \arg \min_a Q(s, a)$

Problem:

- keep acting on-policy, i.e., $a = \pi(s)$
- how to ensure enough exploration?

Learning

Greedy policy improvement

- model-based: $\pi'(s) = \arg \min_a L(s, a) + \gamma \mathbb{E} [V(s_+)|s, a]$
- model-free: $\pi'(s) = \arg \min_a Q(s, a)$

Problem:

- keep acting on-policy, i.e., $a = \pi(s)$
- how to ensure enough exploration?

Simplest idea: ϵ -greedy:

$$\pi(s) = \begin{cases} \arg \max_a Q(s, a) & \text{with } p = 1 - \epsilon \\ a_{\mathcal{U}\{1, n_a\}} & \text{with } p = \epsilon \end{cases}$$

Theorem

For any ϵ -greedy policy $\pi,$ the ϵ -greedy policy π' is an improvement, i.e., $V_{\pi'}(s) \leq V_{\pi}(s)$

Learning

Greedy policy improvement

- model-based: $\pi'(s) = \arg \min_a L(s, a) + \gamma \mathbb{E} [V(s_+)|s, a]$
- model-free: $\pi'(s) = \arg \min_a Q(s, a)$

Problem:

- keep acting on-policy, i.e., $a = \pi(s)$
- how to ensure enough exploration?

Simplest idea: ϵ -greedy:

$$\pi(s) = \begin{cases} \arg \max_a Q(s, a) & \text{with } p = 1 - \epsilon \\ a_{\mathcal{U}\{1, n_a\}} & \text{with } p = \epsilon \end{cases}$$

Theorem

For any ϵ -greedy policy $\pi,$ the ϵ -greedy policy π' is an improvement, i.e., $V_{\pi'}(s) \leq V_{\pi}(s)$

In order to get optimality we need to be GLIE

Greedy in the limit with infinite exploration, e.g., $\epsilon\text{-greedy}$ with $\epsilon\to 0$

*Q***-Learning (basic version)**

Q-Learning (basic version)

Update the action-value function as follows:

$$\delta \leftarrow \mathcal{L}(s, a) + \gamma \min_{a_+} Q(s_+, a_+) - Q(s, a)$$

 $Q(s, a) \leftarrow Q(s, a) + \alpha \delta$

Q-Learning (basic version)

Update the action-value function as follows:

$$\delta \leftarrow L(s, a) + \gamma \min_{a_+} Q(s_+, a_+) - Q(s, a)$$

 $Q(s, a) \leftarrow Q(s, a) + \alpha \delta$

Curse of Dimensionality

- in general: too many state-action pairs
- need to generalize / extrapolate

Q-Learning (basic version)

Update the action-value function as follows:

$$\delta \leftarrow L(s, a) + \gamma \min_{a_+} Q(s_+, a_+) - Q(s, a)$$

 $Q(s, a) \leftarrow Q(s, a) + \alpha \delta$

Curse of Dimensionality

- in general: too many state-action pairs
- need to generalize / extrapolate

Function Approximation

Features $\phi(s, a)$ and weights θ yield $Q_{\theta}(s, a) = \theta^{\top} \phi(s, a)$. Weights update

$$\delta \leftarrow L(s, a) + \gamma \min_{a_+} Q_{\theta}(s_+, a_+) - Q_{\theta}(s, a)$$

$$\theta \leftarrow \theta + \alpha \delta \nabla_{\theta} Q_{\theta}(s, a)$$

- this is a linear function approximation
- deep neural networks are nonlinear

Policy Search

Q-learning: fits $\mathbb{E} (Q_{\theta} - Q_{\star})^2$

- no guarantee that π_{θ} is close to π_{\star}
- what we want is $\min_{\theta} J(\pi_{\theta}) := \mathbb{E} \sum_{k=0}^{\infty} \gamma^k L(s_k, \pi_{\theta}(s_k))$

Policy Search parametrizes π_{θ} and directly minimizes $J(\pi_{\theta})$:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J$$

• model-based: construct a model f and simulate forward in time:

$$J \approx \frac{1}{B} \sum_{i=0}^{B} \sum_{k=0}^{N} \gamma^{k} L\left(s^{(i)}, \pi_{\theta}\left(s^{(i)}\right)\right), \quad s_{+}^{(i)} = f\left(s^{(i)}, \pi_{\theta}\left(s^{(i)}\right), w\right)$$

• actor-critic (model-free): A(s, a) = Q(s, a) - V(s)

Deterministic policy : $\nabla_{\theta} J = \nabla_{\theta} \pi_{\theta} \nabla_{a} A_{\pi_{\theta}},$ Stochastic policy : $\nabla_{\theta} J = \nabla_{\theta} \log \pi_{\theta} A_{\pi_{\theta}},$

- use, e.g., Q-learning for A, or V
- if you are careful: convergence to local min of $J(\pi_{\theta})$

Main issues

- Can we guarantee anything?
 - Safety
 - Stability
 - Optimality

Main issues

- Can we guarantee anything?
 - Safety
 - Stability
 - Optimality
- Learning is potentially
 - Dangerous
 - Expensive
 - Slow

Main issues

- Can we guarantee anything?
 - Safety
 - Stability
 - Optimality
- Learning is potentially
 - Dangerous
 - Expensive
 - Slow

Prior knowledge is valuable

- Why learning from scratch?
- Can we use RL to improve existing controllers?
 - Retain stability and safety
 - Improve performance

Optimal Control - Model Predictive Control (MPC)

- use a model to predict the future
- constraint enforcement
- performance and stability guarantees

$$\begin{split} \min_{x,u} & V^{f}(x_{N}) + \sum_{k=0}^{N-1} L(x,u) \\ \text{s.t.} & x_{0} = s, \\ & x_{k+1} = f(x_{k}, u_{k}), \\ & h(x_{k}, u_{k}) \leq 0, \\ & x_{N} \in \mathbb{X}^{f}. \end{split}$$

Optimal Control - Model Predictive Control (MPC)

- use a model to predict the future
- constraint enforcement
- performance and stability guarantees

$$\min_{x,u} V^{f}(x_{N}) + \sum_{k=0}^{N-1} L(x, u)$$

s.t. $x_{0} = s$,
 $x_{k+1} = f(x_{k}, u_{k})$,
 $h(x_{k}, u_{k}) \leq 0$,
 $x_{N} \in \mathbb{X}^{f}$.

Optimality hinges on

- quality of the model (how descriptive)
- system identification (estimate the correct model parameters)

Optimal Control - Model Predictive Control (MPC)

- use a model to predict the future
- constraint enforcement
- performance and stability guarantees

$$\begin{split} \min_{x,u} \quad V^{f}(x_{N}) + \sum_{k=0}^{N-1} L(x, u) \\ \text{s.t.} \quad x_{0} = s, \\ x_{k+1} = f(x_{k}, u_{k}), \\ h(x_{k}, u_{k}) \leq 0, \\ x_{N} \in \mathbb{X}^{f}. \end{split}$$

Optimality hinges on

• quality of the model (how descriptive)

Optimal Control - Model Predictive Control (MPC)

- use a model to predict the future
- constraint enforcement
- performance and stability guarantees

$$\begin{split} \min_{x,u} \quad V^{f}(x_{N}) + \sum_{k=0}^{N-1} L(x, u) \\ \text{s.t.} \quad x_{0} = s, \\ x_{k+1} = f(x_{k}, u_{k}), \\ h(x_{k}, u_{k}) \leq 0, \\ x_{N} \in \mathbb{X}^{f}. \end{split}$$

Optimality hinges on

• quality of the model (how descriptive)

• system identification (estimate the correct model parameters) but then, if the model is not "perfect"

• can we recover optimality through learning?

Optimal Control - Model Predictive Control (MPC)

- use a model to predict the future
- constraint enforcement
- performance and stability guarantees

$$\min_{x,u} V^{f}(x_{N}) + \sum_{k=0}^{N-1} L(x, u)$$

s.t. $x_{0} = s$,
 $x_{k+1} = f(x_{k}, u_{k})$,
 $h(x_{k}, u_{k}) \leq 0$,
 $x_{N} \in \mathbb{X}^{f}$.

Optimality hinges on

• quality of the model (how descriptive)

- can we recover optimality through learning?
- use MPC as function approximator

Optimal Control - Model Predictive Control (MPC)

- use a model to predict the future
- constraint enforcement
- performance and stability guarantees

$$egin{aligned} &\mathcal{V}_{ heta}(s) := \min_{x,u} & V^{\mathrm{f}}_{ heta}(x_N) + \sum_{k=0}^{N-1} L_{ heta}(x,u) \ & ext{ s.t. } & x_0 = s, \ & x_{k+1} = f_{ heta}(x_k,u_k), \ & h_{ heta}(x_k,u_k) \leq 0, \ & x_N \in \mathbb{X}^{\mathrm{f}}_{ heta}. \end{aligned}$$

Optimality hinges on

• quality of the model (how descriptive)

- can we recover optimality through learning?
- use MPC as function approximator

Optimal Control - Model Predictive Control (MPC)

- use a model to predict the future
- constraint enforcement
- performance and stability guarantees

$$\pi_{\theta}(s) := \arg \min_{x,u} \quad V_{\theta}^{f}(x_{N}) + \sum_{k=0}^{N-1} L_{\theta}(x,u)$$

s.t. $x_{0} = s$,
 $x_{k+1} = f_{\theta}(x_{k}, u_{k}),$
 $h_{\theta}(x_{k}, u_{k}) \leq 0,$
 $x_{N} \in \mathbb{X}_{\theta}^{f}.$

Optimality hinges on

• quality of the model (how descriptive)

- can we recover optimality through learning?
- use MPC as function approximator

Optimal Control - Model Predictive Control (MPC)

- use a model to predict the future
- constraint enforcement
- performance and stability guarantees

$$egin{aligned} Q_{ heta}(s, m{a}) &:= \min_{x, u} \quad V^{\mathrm{f}}_{ heta}(x_N) + \sum_{k=0}^{N-1} L_{ heta}(x, u) \ \mathrm{s.t.} \quad x_0 &= m{s}, \quad u_0 &= m{a}, \ x_{k+1} &= f_{ heta}(x_k, u_k), \ h_{ heta}(x_k, u_k) &\leq 0, \ x_N &\in \mathbb{X}^{\mathrm{f}}_{ heta}. \end{aligned}$$

Optimality hinges on

• quality of the model (how descriptive)

- can we recover optimality through learning?
- use MPC as function approximator

Learn the true action-value function with MPC

• inaccurate MPC model $\mathbb{P}[\hat{s}_+|s,a] \neq \mathbb{P}[s_+|s,a]$

Learn the true action-value function with MPC

• inaccurate MPC model $\mathbb{P}[\hat{s}_+|s,a] \neq \mathbb{P}[s_+|s,a]$

Theorem [Gros, Zanon TAC2020]

Assume that the MPC parametrization (through θ) is rich enough. Then, the exact V_{\star} , Q_{\star} , π_{\star} are recovered.

Learn the true action-value function with MPC

• inaccurate MPC model $\mathbb{P}[\hat{s}_+|s,a] \neq \mathbb{P}[s_+|s,a]$

Theorem [Gros, Zanon TAC2020]

Assume that the MPC parametrization (through θ) is rich enough. Then, the exact V_{\star} , Q_{\star} , π_{\star} are recovered.

- SysId and RL are "orthogonal"
- RL cannot learn the true model

Learn the true action-value function with MPC

• inaccurate MPC model $\mathbb{P}[\hat{s}_+|s,a] \neq \mathbb{P}[s_+|s,a]$

Theorem [Gros, Zanon TAC2020]

Assume that the MPC parametrization (through θ) is rich enough. Then, the exact V_{\star} , Q_{\star} , π_{\star} are recovered.

- SysId and RL are "orthogonal"
- RL cannot learn the true model

$$\begin{split} \min_{x,u} \quad V_{\theta}^{\mathrm{f}}(x_{N}) + \sum_{k=0}^{N-1} L_{\theta}(x,u) \\ \mathrm{s.t.} \quad x_{0} = s, \\ x_{k+1} = f_{\theta}(x_{k},u_{k}), \\ h_{\theta}(x_{k},u_{k}) \leq 0, \\ x_{N} \in \mathbb{X}_{\theta}^{\mathrm{f}}. \end{split}$$

Algorithmic framework:

[Zanon, Gros, Bemporad ECC2019]

- Enforce $L_{\theta}, V_{\theta}^{\mathrm{f}} \succ 0$
- Can use condensed MPC formulation
- Can use globalization techniques

Economic MPC and RL

- If $L_{\theta}(s, a) \succ 0$, then $V_{\theta}(s) \succ 0$ is a Lyapunov function
- In RL we can have $L(s, a) \not\succ 0 \Rightarrow V_{\star}(s) \not\succ 0$

Economic MPC and RL

- If $L_{\theta}(s, a) \succ 0$, then $V_{\theta}(s) \succ 0$ is a Lyapunov function
- In RL we can have $L(s, a) \not\succ 0 \Rightarrow V_{\star}(s) \not\succ 0$

ENMPC theory:

- if we rotate the cost we can have $V_\star(s) = \lambda(s) + V_ heta(s)$
- e.g., if $0 \prec L_{\theta}(s, a) = L(s, a) \lambda(s) + \lambda(f(s, a))$

Economic MPC and RL

- If $L_{\theta}(s, a) \succ 0$, then $V_{\theta}(s) \succ 0$ is a Lyapunov function
- In RL we can have $L(s,a) \not\succ 0 \Rightarrow V_{\star}(s) \not\succ 0$

ENMPC theory:

• if we rotate the cost we can have $V_\star(s) = \lambda(s) + V_ heta(s)$

• e.g., if
$$0 \prec L_{\theta}(s, a) = L(s, a) - \lambda(s) + \lambda(f(s, a))$$

Therefore, use

$$egin{aligned} \mathcal{V}_{ heta}(s) &= \min_{x,u} \ \lambda_{ heta}(s) + \mathcal{V}^{\mathrm{f}}_{ heta}(x_{N}) + \sum_{k=0}^{N-1} \mathcal{L}_{ heta}(x,u) \ & ext{s.t.} \ x_{0} = s, \end{aligned}$$

$$egin{aligned} & x_{k+1} = f_{ heta}(x_k, u_k), \ & h_{ heta}(x_k, u_k) \leq 0, \ & x_N \in \mathbb{X}^{\mathrm{f}}_{ heta}. \end{aligned}$$

Economic MPC and RL

- If $L_{\theta}(s, a) \succ 0$, then $V_{\theta}(s) \succ 0$ is a Lyapunov function
- In RL we can have $L(s, a) \not\succ 0 \Rightarrow V_{\star}(s) \not\succ 0$

ENMPC theory:

• if we rotate the cost we can have $V_\star(s) = \lambda(s) + V_ heta(s)$

• e.g., if
$$0 \prec L_{\theta}(s, a) = L(s, a) - \lambda(s) + \lambda(f(s, a))$$

Therefore, use

$$V_{\theta}(s) = \min_{x,u} \lambda_{\theta}(s) + V_{\theta}^{f}(x_{N}) + \sum_{k=0}^{N-1} L_{\theta}(x, u)$$

s.t. $x_{0} = s$,
 $x_{k+1} = f_{\theta}(x_{k}, u_{k}),$
 $h_{\theta}(x_{k}, u_{k}) \leq 0,$
 $x_{N} \in \mathbb{X}_{\theta}^{f}.$

Enforce stability with $L_{ heta}(s,a) \succ 0$ and learn also $\lambda_{ heta}(s)$

Evaporation Process

Evaporation Process

Model and cost

$$\begin{bmatrix} \dot{X}_2 \\ \dot{P}_2 \end{bmatrix} = f\left(\begin{bmatrix} X_2 \\ P_2 \end{bmatrix}, \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} \right), \qquad \ell(x, u) = \text{something complicated}$$

Evaporation Process

Model and cost

$$\begin{bmatrix} \dot{X}_2 \\ \dot{P}_2 \end{bmatrix} = f\left(\begin{bmatrix} X_2 \\ P_2 \end{bmatrix}, \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} \right), \qquad \ell(x, u) = \text{something complicated}.$$

Bounds

$$\begin{split} X_2 &\geq 25\,\%, & 40\,\mathrm{kPa} \leq P_2 \leq 80\,\mathrm{kPa}, \\ P_{100} &\leq 400\,\mathrm{kPa}, & F_{200} \leq 400\mathrm{kg/min}. \end{split}$$

Evaporation Process

Model and cost

$$\begin{bmatrix} \dot{X}_2 \\ \dot{P}_2 \end{bmatrix} = f\left(\begin{bmatrix} X_2 \\ P_2 \end{bmatrix}, \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} \right), \qquad \ell(x, u) = \text{something complicated}.$$

Bounds

$$\begin{split} X_2 &\geq 25\,\%, & 40\,\mathrm{kPa} \leq P_2 \leq 80\,\mathrm{kPa}, \\ P_{100} &\leq 400\,\mathrm{kPa}, & F_{200} \leq 400\mathrm{kg/min}. \end{split}$$

$$\begin{bmatrix} X_2 \\ P_2 \end{bmatrix} = \begin{bmatrix} 25 \% \\ 49.743 \text{ kPa} \end{bmatrix}, \qquad \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} = \begin{bmatrix} 191.713 \text{ kPa} \\ 215.888 \text{ kg/min} \end{bmatrix}.$$

Evaporation Process

Model and cost

$$\begin{bmatrix} \dot{X}_2 \\ \dot{P}_2 \end{bmatrix} = f\left(\begin{bmatrix} X_2 \\ P_2 \end{bmatrix}, \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} \right), \qquad \ell(x, u) = \text{something complicated}.$$

Bounds

$$\begin{split} X_2 &\geq 25\,\%, & 40\,\mathrm{kPa} \leq P_2 \leq 80\,\mathrm{kPa}, \\ P_{100} &\leq 400\,\mathrm{kPa}, & F_{200} \leq 400\mathrm{kg/min}. \end{split}$$

Nominal optimal steady state

$$\begin{bmatrix} X_2 \\ P_2 \end{bmatrix} = \begin{bmatrix} 25\% \\ 49.743 \text{ kPa} \end{bmatrix}, \qquad \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} = \begin{bmatrix} 191.713 \text{ kPa} \\ 215.888 \text{ kg/min} \end{bmatrix}$$

Nominal Economic MPC gain:

- large in the nominal case
- ullet about 1.5 % in the stochastic case: cannot even guarantee to have any

Evaporation Process

Reinforcement learning based on

$$\min_{\boldsymbol{x},\boldsymbol{u},\sigma} \quad \overbrace{\boldsymbol{x}_{0}^{\top} \boldsymbol{H}_{\lambda} \boldsymbol{x}_{0} + \boldsymbol{h}_{\lambda}^{\top} \boldsymbol{x}_{0} + \boldsymbol{c}_{\lambda}}^{\lambda(\boldsymbol{x}_{0})} + \gamma^{N} \left(\overbrace{\boldsymbol{x}_{N}^{\top} \boldsymbol{H}_{V^{f}} \boldsymbol{x}_{N} + \boldsymbol{h}_{V^{f}}^{\top} \boldsymbol{x}_{N} + \boldsymbol{c}_{V^{f}}}^{V^{f}(\boldsymbol{x}_{N})} \right) + \sum_{k=0}^{N-1} \gamma^{k} \left(\underbrace{ \begin{bmatrix} \boldsymbol{x}_{k} \\ \boldsymbol{u}_{k} \end{bmatrix}^{\top} \boldsymbol{H}_{\ell} \begin{bmatrix} \boldsymbol{x}_{k} \\ \boldsymbol{u}_{k} \end{bmatrix} + \boldsymbol{h}_{\ell}^{\top} \begin{bmatrix} \boldsymbol{x}_{k} \\ \boldsymbol{u}_{k} \end{bmatrix} + \boldsymbol{c}_{\ell} + \boldsymbol{\sigma}_{k}^{\top} \boldsymbol{H}_{\sigma}^{\top} \boldsymbol{\sigma}_{k} + \boldsymbol{h}_{\sigma}^{\top} \boldsymbol{\sigma}_{k}}^{\ell(\boldsymbol{x}_{k},\boldsymbol{u}_{k},\boldsymbol{\sigma}_{k},\boldsymbol{\sigma}_{k})} \right)$$

s.t. $\boldsymbol{x}_{0} = \boldsymbol{s},$

$$egin{aligned} & \lambda_0 = 3, \ & x_{k+1} = f(x_k, u_k) + c_f, \ & u_1 \leq u_k \leq u_u, \ & x_1 - \sigma_k^1 \leq x_k \leq x_u + \sigma_k^u. \end{aligned}$$

Evaporation Process

Reinforcement learning based on

 $\text{Parameters to learn:} \ \ \theta = \{ H_{\lambda}, h_{\lambda}, c_{\lambda}, H_{V^{\mathrm{f}}}, h_{V^{\mathrm{f}}}, c_{V^{\mathrm{f}}}, H_{\ell}, h_{\ell}, c_{\ell}, c_{f}, x_{\mathrm{l}}, x_{\mathrm{u}} \}$

Evaporation Process

Reinforcement learning based on

$$\min_{x,u,\sigma} \quad \overbrace{x_{0}^{\top}H_{\lambda}x_{0} + h_{\lambda}^{\top}x_{0} + c_{\lambda}}^{\lambda(x_{0})} + \gamma^{N} \left(\overbrace{x_{N}^{\top}H_{V^{f}}x_{N} + h_{V^{f}}^{\top}x_{N} + c_{V^{f}}}^{V^{f}(x_{N})} \right)$$

$$+ \sum_{k=0}^{N-1} \gamma^{k} \left(\underbrace{ \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix}^{\top}H_{\ell} \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix} + h_{\ell}^{\top} \begin{bmatrix} x_{k} \\ u_{k} \end{bmatrix} + c_{\ell} + \sigma_{k}^{\top}H_{\sigma}^{\top}\sigma_{k} + h_{\sigma}^{\top}\sigma_{k}}^{\top} \right)$$

$$\text{s.t.} \quad x_{0} = s,$$

$$x_{k+1} = f(x_{k}, u_{k}) + c_{f},$$

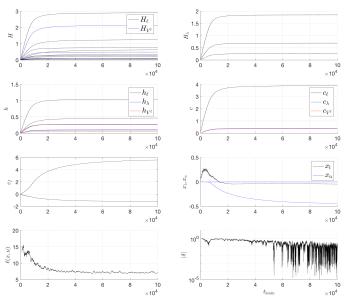
$$u_{1} \leq u_{k} \leq u_{u},$$

$$x_{l} - \sigma_{k}^{l} \leq x_{k} \leq x_{u} + \sigma_{k}^{u}.$$

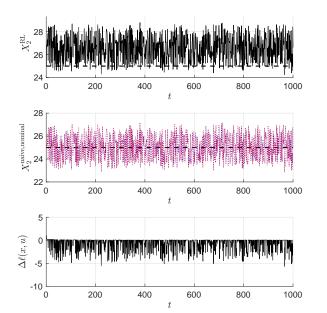
Parameters to learn: $\theta = \{H_{\lambda}, h_{\lambda}, c_{\lambda}, H_{V^{f}}, h_{V^{f}}, c_{V^{f}}, H_{\ell}, h_{\ell}, c_{\ell}, c_{f}, x_{l}, x_{u}\}$ Initial guess: $\overline{\theta} = \{0, 0, 0, H_{V^{f}}, 0, 0, H_{\ell}, 0, 0, 0, x_{l}, x_{u}\}$

$$H_{V^{\mathrm{f}}} = I, \quad H_{\ell} = I, \quad x_{\mathrm{l}} = \begin{bmatrix} 25\\ 100 \end{bmatrix}, \quad x_{\mathrm{u}} = \begin{bmatrix} 100\\ 80 \end{bmatrix}$$

Evaporation Process



Evaporation Process



14% gain

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

Ensure that $\pi(s) \in S$:

Penalize constraint violation

- violations rare but cannot be excluded
- ok when safety not at stake

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

Ensure that $\pi(s) \in S$:

Penalize constraint violation

- violations rare but cannot be excluded
- ok when safety not at stake

Project policy onto feasible set:

$$\pi^{\perp}_{ heta}(x) = rg\min_{u} \|u - \pi_{ heta}\| \quad ext{s.t.} \ u \in \mathcal{S}$$

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

Ensure that $\pi(s) \in S$:

Penalize constraint violation

- violations rare but cannot be excluded
- ok when safety not at stake

Project policy onto feasible set:

$$\pi^{\perp}_{ heta}(x) = rg\min_{u} \|u - \pi_{ heta}\| \quad ext{s.t.} \ u \in \mathcal{S}$$

 $\bullet\,$ cannot explore outside $\mathcal{S} \Rightarrow$ constrained RL problem

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

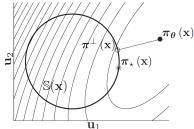
Ensure that $\pi(s) \in S$:

- **Penalize** constraint violation
 - violations rare but cannot be excluded
 - ok when safety not at stake

Project policy onto feasible set:

$$\pi^{\perp}_{ heta}(x) = rg\min_{u} \|u - \pi_{ heta}\| \quad ext{s.t.} \ u \in \mathcal{S}$$

- $\bullet\,$ cannot explore outside $\mathcal{S} \Rightarrow$ constrained RL problem
- Q-learning
 - projection must be done carefully



Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

- **Penalize** constraint violation
 - violations rare but cannot be excluded
 - ok when safety not at stake
- Project policy onto feasible set:

$$\pi_{\theta}^{\perp}(x) = \arg\min_{u} \|u - \pi_{\theta}\| \quad \text{s.t. } u \in \mathcal{S}$$

- $\bullet\,$ cannot explore outside $\mathcal{S} \Rightarrow$ constrained RL problem
- Q-learning
 - projection must be done carefully

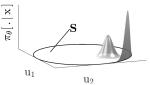
• DPG:
$$\nabla_{\theta} \pi_{\theta}^{\perp} \nabla_{u} A_{\pi^{\perp}} = \nabla_{\theta} \pi_{\theta} M \nabla_{u} A_{\pi^{\perp}}$$

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

- **Penalize** constraint violation
 - violations rare but cannot be excluded
 - ok when safety not at stake
- Project policy onto feasible set:

$$\pi_{\theta}^{\perp}(x) = \arg\min_{u} \|u - \pi_{\theta}\| \quad \text{s.t. } u \in \mathcal{S}$$

- $\bullet\,$ cannot explore outside $\mathcal{S} \Rightarrow$ constrained RL problem
- Q-learning
 - projection must be done carefully
- DPG: $\nabla_{\theta} \pi_{\theta}^{\perp} \nabla_{u} A_{\pi^{\perp}} = \nabla_{\theta} \pi_{\theta} M \nabla_{u} A_{\pi^{\perp}}$
- SPG: 1. draw a sample; 2. project
 - dirac-like structure on the boundary



Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

- **Penalize** constraint violation
 - violations rare but cannot be excluded
 - ok when safety not at stake
- Project policy onto feasible set:

$$\pi_{\theta}^{\perp}(x) = \arg\min_{u} \|u - \pi_{\theta}\| \quad \text{s.t. } u \in \mathcal{S}$$

- $\bullet\,$ cannot explore outside $\mathcal{S} \Rightarrow$ constrained RL problem
- Q-learning
 - projection must be done carefully
- DPG: $\nabla_{\theta} \pi_{\theta}^{\perp} \nabla_{u} A_{\pi^{\perp}} = \nabla_{\theta} \pi_{\theta} M \nabla_{u} A_{\pi^{\perp}}$
- SPG: 1. draw a sample; 2. project
 - dirac-like structure on the boundary
 - $\bullet\,$ use IP method for projection: \approx Dirac, but continuous

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

- **Penalize** constraint violation
 - violations rare but cannot be excluded
 - ok when safety not at stake
- Project policy onto feasible set:

$$\pi_{\theta}^{\perp}(x) = \arg\min_{u} \|u - \pi_{\theta}\| \quad \text{s.t. } u \in \mathcal{S}$$

- $\bullet\,$ cannot explore outside $\mathcal{S} \Rightarrow$ constrained RL problem
- Q-learning
 - projection must be done carefully
- DPG: $\nabla_{\theta} \pi_{\theta}^{\perp} \nabla_{u} A_{\pi^{\perp}} = \nabla_{\theta} \pi_{\theta} M \nabla_{u} A_{\pi^{\perp}}$
- SPG: 1. draw a sample; 2. project
 - dirac-like structure on the boundary
 - $\bullet\,$ use IP method for projection: \approx Dirac, but continuous
 - ∇_θ J(π[⊥]_θ) = ∇_θ log π_θ∇_uA_{π[⊥]} evaluate score function gradient on unprojected sample

Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020, rev)]

Ensure that $\pi(s) \in S$:

- **Penalize** constraint violation
 - violations rare but cannot be excluded
 - ok when safety not at stake
- Project policy onto feasible set:

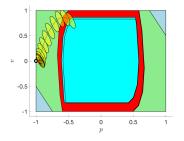
$$\pi_{\theta}^{\perp}(x) = \arg\min_{u} \|u - \pi_{\theta}\| \quad \text{s.t. } u \in \mathcal{S}$$

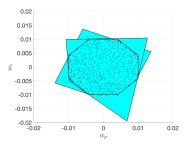
- $\bullet\,$ cannot explore outside $\mathcal{S} \Rightarrow$ constrained RL problem
- Q-learning
 - projection must be done carefully
- DPG: $\nabla_{\theta} \pi_{\theta}^{\perp} \nabla_{u} A_{\pi^{\perp}} = \nabla_{\theta} \pi_{\theta} M \nabla_{u} A_{\pi^{\perp}}$
- SPG: 1. draw a sample; 2. project
 - dirac-like structure on the boundary
 - $\bullet\,$ use IP method for projection: \approx Dirac, but continuous
 - ∇_θ J(π[⊥]_θ) = ∇_θ log π_θ∇_uA_{π[⊥]} evaluate score function gradient on unprojected sample

3 Safety by construction

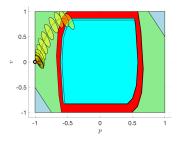
- Robust MPC as function approximator
- Model used for data compression

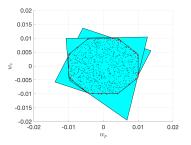
- Robust MPC as function approximator
- Model used for data compression



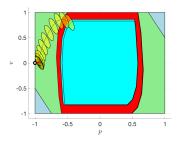


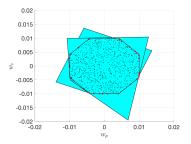
- Robust MPC as function approximator
- Model used for data compression
- Q-learning: no adaptation required





- Robust MPC as function approximator
- Model used for data compression
- Q-learning: no adaptation required
- Actor-critic:
 - best possible performance
 - constraints pose technical difficulties





Safe RL [Zanon, Gros (TAC, rev.)], [Gros, Zanon (TAC, rev.)]

- Robust MPC as function approximator
- Model used for data compression
- Q-learning: no adaptation required
- Actor-critic:
 - best possible performance
 - constraints pose technical difficulties

How to explore safely?

$$\min_{\substack{x,u \\ x,u}} \quad d^{\top} u_0 + V_{\theta}^{f}(x_N) + \sum_{k=0}^{N-1} L_{\theta}(x,u)$$
s.t. $x_0 = s$,
 $x_{k+1} = f_{\theta}(x_k, u_k)$,
 $h_{\theta}(x_k, u_k) \le 0$,
 $x_N \in \mathbb{X}_{\theta}^{f}$.

Gradient d perturbs the MPC solution.

Safe Q-learning [Zanon, Gros (TAC, rev.)]

Evaporation process

$$\begin{bmatrix} X_2 \\ P_2 \end{bmatrix} = \begin{bmatrix} 25 \% \\ 49.743 \text{ kPa} \end{bmatrix}, \qquad \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} = \begin{bmatrix} 191.713 \text{ kPa} \\ 215.888 \text{ kg/min} \end{bmatrix}.$$

Safe Q-learning [Zanon, Gros (TAC, rev.)]

Evaporation process

Nominal optimal steady state

$$\begin{bmatrix} X_2 \\ P_2 \end{bmatrix} = \begin{bmatrix} 25 \% \\ 49.743 \text{ kPa} \end{bmatrix}, \qquad \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} = \begin{bmatrix} 191.713 \text{ kPa} \\ 215.888 \text{ kg/min} \end{bmatrix}$$

• Satisfy $X_2 \ge 25$ robustly

٠

Safe *Q*-learning [Zanon, Gros (TAC, rev.)]

Evaporation process

$$\begin{bmatrix} X_2 \\ P_2 \end{bmatrix} = \begin{bmatrix} 25 \% \\ 49.743 \text{ kPa} \end{bmatrix}, \qquad \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} = \begin{bmatrix} 191.713 \text{ kPa} \\ 215.888 \text{ kg/min} \end{bmatrix}.$$

- Satisfy $X_2 \ge 25$ robustly
- Adjust uncertainty set representation

Safe Q-learning [Zanon, Gros (TAC, rev.)]

Evaporation process

$$\begin{bmatrix} X_2 \\ P_2 \end{bmatrix} = \begin{bmatrix} 25 \% \\ 49.743 \text{ kPa} \end{bmatrix}, \qquad \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} = \begin{bmatrix} 191.713 \text{ kPa} \\ 215.888 \text{ kg/min} \end{bmatrix}.$$

- Satisfy $X_2 \ge 25$ robustly
- Adjust uncertainty set representation
- Adjust the RMPC cost

Safe Q-learning [Zanon, Gros (TAC, rev.)]

Evaporation process

$$\begin{bmatrix} X_2 \\ P_2 \end{bmatrix} = \begin{bmatrix} 25 \% \\ 49.743 \text{ kPa} \end{bmatrix}, \qquad \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} = \begin{bmatrix} 191.713 \text{ kPa} \\ 215.888 \text{ kg/min} \end{bmatrix}.$$

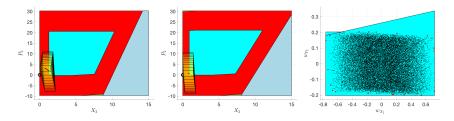
- Satisfy $X_2 \ge 25$ robustly
- Adjust uncertainty set representation
- Adjust the RMPC cost
- Adjust feedback K

Safe *Q*-learning [Zanon, Gros (TAC, rev.)]

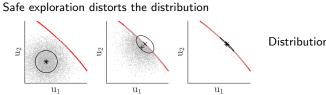
Evaporation process

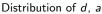
$$\begin{bmatrix} X_2 \\ P_2 \end{bmatrix} = \begin{bmatrix} 25 \% \\ 49.743 \text{ kPa} \end{bmatrix}, \qquad \begin{bmatrix} P_{100} \\ F_{200} \end{bmatrix} = \begin{bmatrix} 191.713 \text{ kPa} \\ 215.888 \text{ kg/min} \end{bmatrix}.$$

- Satisfy $X_2 \ge 25$ robustly
- Adjust uncertainty set representation
- Adjust the RMPC cost
- Adjust feedback K



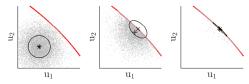
Safe Actor-Critic RL [Gros, Zanon (TAC, rev.)]





Safe Actor-Critic RL [Gros, Zanon (TAC, rev.)]

Safe exploration distorts the distribution

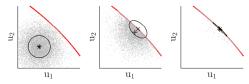


Deterministic PG

$$\nabla_{\theta} J = \nabla_{\theta} \pi_{\theta} \nabla_{a} \underbrace{\mathcal{A}_{\pi_{\theta}}}_{\text{Advantage Function}}$$

Safe Actor-Critic RL [Gros, Zanon (TAC, rev.)]

Safe exploration distorts the distribution



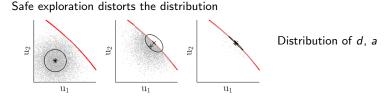
Deterministic PG

Bias in $\nabla_a A_{\pi_\theta}$:

•
$$\mathbb{E}[a - \pi_{\theta}(s)] \neq 0$$

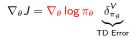
• $\operatorname{Cov}[a - \pi_{\theta}(s)] \rightarrow \operatorname{rank} \operatorname{deficient}$

Safe Actor-Critic RL [Gros, Zanon (TAC, rev.)]



Deterministic PG

$$\nabla_{\theta} J = \nabla_{\theta} \pi_{\theta} \nabla_{\mathsf{a}} \underbrace{\mathcal{A}_{\pi_{\theta}}}_{\mathsf{Advantage Function}}$$

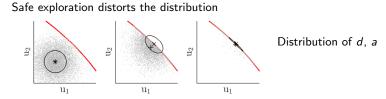


Bias in $\nabla_a A_{\pi_\theta}$:

•
$$\mathbb{E}[a - \pi_{\theta}(s)] \neq 0$$

• $\operatorname{Cov}[a - \pi_{\theta}(s)] \rightarrow \operatorname{rank} \operatorname{deficient}$

Safe Actor-Critic RL [Gros, Zanon (TAC, rev.)]



Deterministic PG

$$\nabla_{\theta} J = \nabla_{\theta} \pi_{\theta} \nabla_{\mathsf{a}} \underbrace{\mathcal{A}_{\pi_{\theta}}}_{\mathsf{Advantage Function}}$$

Bias in $\nabla_a A_{\pi_\theta}$:

•
$$\mathbb{E}[a - \pi_{\theta}(s)] \neq 0$$

• $\operatorname{Cov}[a - \pi_{\theta}(s)] \rightarrow \operatorname{rank} \operatorname{deficient}$

$$\nabla_{\theta} J = \nabla_{\theta} \log \pi_{\theta} \underbrace{\delta_{\pi_{\theta}}^{V}}_{\text{TD Error}}$$

- sampling $\nabla_\theta \log \pi_\theta$ too expensive
 - if action infeasible: resample
- gradient perturbation is the solution
 - ∇J more expensive than DPG

MPC Sensitivities [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC,rev.)], [Gros, Zanon (TAC,rev.)]

$$\begin{aligned} \theta \leftarrow \theta + \alpha \Big\{ \delta \nabla_{\theta} Q_{\theta}(s, a), & \nabla_{\theta} \pi_{\theta} \nabla_{a} A_{\pi_{\theta}}, & \nabla_{\theta} \pi_{\theta} \delta_{\pi_{\theta}} \Big\} \\ Q\text{-learning} & \mathsf{DPG} & \mathsf{SPG} \end{aligned}$$

MPC Sensitivities [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC, rev.)], [Gros, Zanon (TAC, rev.)]

$$\theta \leftarrow \theta + \alpha \Big\{ \delta \nabla_{\theta} Q_{\theta}(s, a), \qquad \nabla_{\theta} \pi_{\theta} \nabla_{a} A_{\pi_{\theta}}, \qquad \nabla_{\theta} \pi_{\theta} \delta_{\pi_{\theta}} \Big\}$$
Q-learning DPG SPG
Differentiate MPC [Gros, Zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]
Need to compute $\nabla_{\theta} Q_{\theta}(s, a), \nabla_{\theta} \pi_{\theta}(s), \nabla_{a} A_{\pi_{\theta}}$

MPC Sensitivities [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC, rev.)], [Gros, Zanon (TAC, rev.)]

$$\begin{aligned} \theta \leftarrow \theta + \alpha \Big\{ \delta \nabla_{\theta} Q_{\theta}(s, a), & \nabla_{\theta} \pi_{\theta} \nabla_{a} A_{\pi_{\theta}}, & \nabla_{\theta} \pi_{\theta} \delta_{\pi_{\theta}} \Big\} \\ & Q\text{-learning} & \mathsf{DPG} & \mathsf{SPG} \end{aligned}$$

Differentiate MPC [Gros, Zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute $\nabla_{\theta} Q_{\theta}(s, a)$, $\nabla_{\theta} \pi_{\theta}(s)$, $\nabla_{a} A_{\pi_{\theta}}$

Result from parametric optimization:

- $\nabla_{\theta} Q_{\theta}(s, a) = \nabla_{\theta} \mathcal{L}_{\theta}, \qquad \qquad \mathcal{L}_{\theta} = \text{Lagrangian of MPC}$
- $M \nabla_{\theta} \pi_{\theta}(s) = \frac{\partial r_{\theta}}{\partial \theta}$,

•
$$\nabla_a A_{\pi_\theta} = \nu$$
,

- M, r = KKT matrix and residual
- $\nu =$ multiplier of $u_0 = a$

MPC Sensitivities [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC, rev.)], [Gros, Zanon (TAC, rev.)]

$$\begin{aligned} \theta \leftarrow \theta + \alpha \Big\{ \delta \nabla_{\theta} Q_{\theta}(s, \mathbf{a}), & \nabla_{\theta} \pi_{\theta} \nabla_{\mathbf{a}} A_{\pi_{\theta}}, & \nabla_{\theta} \pi_{\theta} \delta_{\pi_{\theta}} \Big\} \\ & Q\text{-learning} & \mathsf{DPG} & \mathsf{SPG} \end{aligned}$$

Differentiate MPC [Gros, Zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute $\nabla_{\theta} Q_{\theta}(s, a), \nabla_{\theta} \pi_{\theta}(s), \nabla_{a} A_{\pi_{\theta}}(s)$

Result from parametric optimization:

- $\nabla_{\theta} Q_{\theta}(s, a) = \nabla_{\theta} \mathcal{L}_{\theta}, \qquad \mathcal{L}_{\theta} = \text{Lagrangian of MPC}$
- $M \nabla_{\theta} \pi_{\theta}(s) = \frac{\partial r_{\theta}}{\partial \theta}$,
- $\nabla_a A_{\pi a} = \nu$.

- - M, r = KKT matrix and residual
 - $\nu =$ multiplier of $u_0 = a$

Derivatives are cheap!

- $\nabla_{\theta} \mathcal{L}_{\theta}$ much cheaper than MPC
- *M* already factorized inside MPC
- ν is for free

MPC Sensitivities [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC, rev.)], [Gros, Zanon (TAC, rev.)]

$$\begin{aligned} \theta \leftarrow \theta + \alpha \Big\{ \delta \nabla_{\theta} Q_{\theta}(s, \mathbf{a}), & \nabla_{\theta} \pi_{\theta} \nabla_{\mathbf{a}} A_{\pi_{\theta}}, & \nabla_{\theta} \pi_{\theta} \delta_{\pi_{\theta}} \Big\} \\ Q\text{-learning} & \mathsf{DPG} & \mathsf{SPG} \end{aligned}$$

Differentiate MPC [Gros, Zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute $\nabla_{\theta} Q_{\theta}(s, a), \nabla_{\theta} \pi_{\theta}(s), \nabla_{a} A_{\pi_{\theta}}(s)$

Result from parametric optimization:

• $\nabla_{\theta} Q_{\theta}(s, a) = \nabla_{\theta} \mathcal{L}_{\theta}, \qquad \mathcal{L}_{\theta} = \text{Lagrangian of MPC}$ • $M \nabla_{\theta} \pi_{\theta}(s) = \frac{\partial r_{\theta}}{\partial \theta}$,

$$= \nu$$
, n

M, r = KKT matrix and residual

$$v = multiplier of u_0 = a$$

Derivatives are cheap!

- $\nabla_{\theta} \mathcal{L}_{\theta}$ much cheaper than MPC
- M already factorized inside MPC
- ν is for free

• $\nabla_a A_{\pi a}$

Safe RI :

- ∇ constraint tightening
- Actor-critic
 - Additional computations
 - DPG cheaper than SPG

Real-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020, rev)]

Real-time feasibility:

Real-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020, rev)]

Real-time feasibility:

• NMPC can be computationally heavy

Real-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020, rev)]

Real-time feasibility:

- NMPC can be computationally heavy
- use RTI

Real-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020, rev)]

Real-time feasibility:

- NMPC can be computationally heavy
- use RTI

Sensitivities:

• formulae only hold at convergence

Real-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020, rev)]

Real-time feasibility:

- NMPC can be computationally heavy
- use RTI

Sensitivities:

- formulae only hold at convergence
- compute sensitivities of RTI QP
- justified in a patfollowing framework

Real-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020, rev)]

Real-time feasibility:

- NMPC can be computationally heavy
- use RTI

Sensitivities:

- formulae only hold at convergence
- compute sensitivities of RTI QP
- justified in a patfollowing framework

Evaporation process:

Real-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020, rev)]

Real-time feasibility:

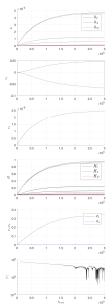
- NMPC can be computationally heavy
- use RTI

Sensitivities:

- formulae only hold at convergence
- compute sensitivities of RTI QP
- justified in a patfollowing framework

Evaporation process:

• Similar results as fully converged NMPC



Real-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020, rev)]

Real-time feasibility:

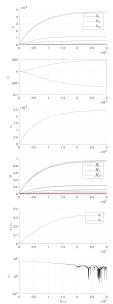
- NMPC can be computationally heavy
- use RTI

Sensitivities:

- formulae only hold at convergence
- compute sensitivities of RTI QP
- justified in a patfollowing framework

Evaporation process:

- Similar results as fully converged NMPC
- $\bullet~$ Gain $\approx 15-20\%$ over standard RTI



Mixed-Integer Problems [Gros, Zanon IFAC2020, rev.]

Can we handle mixed-integer problems?

- RL was born for integer problems
- Apply, e.g., SPG: expensive

Mixed-Integer Problems [Gros, Zanon IFAC2020, rev.]

Can we handle mixed-integer problems?

- RL was born for integer problems
- Apply, e.g., SPG: expensive

What about a combination of SPG and DPG?

- separate continuous and integer parts
- continuous: DPG
- integer: SPG

Mixed-Integer Problems [Gros, Zanon IFAC2020, rev.]

Can we handle mixed-integer problems?

- RL was born for integer problems
- Apply, e.g., SPG: expensive

What about a combination of SPG and DPG?

- separate continuous and integer parts
- continuous: DPG
- integer: SPG

Real system:

$$x_{k+1} = x_k + u_k i_k + w_k,$$
 $w_k \sim \mathcal{U}[0, 0.05]$

Mixed-Integer Problems [Gros, Zanon IFAC2020, rev.]

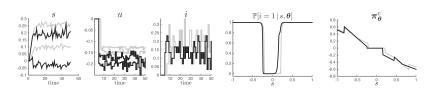
Can we handle mixed-integer problems?

- RL was born for integer problems
- Apply, e.g., SPG: expensive

What about a combination of SPG and DPG?

- separate continuous and integer parts
- continuous: DPG
- integer: SPG

Real system:



$$x_{k+1} = x_k + u_k i_k + w_k,$$
 $w_k \sim \mathcal{U}[0, 0.05]$

Conclusions

The goal:

- simplify the computational aspects
- provide safety and stability guarantees
- achieve true optimality
- self-tuning optimal controllers

Conclusions

The goal:

- simplify the computational aspects
- provide safety and stability guarantees
- achieve true optimality
- self-tuning optimal controllers

We are not quite there yet!

Conclusions

The goal:

- simplify the computational aspects
- provide safety and stability guarantees
- achieve true optimality
- self-tuning optimal controllers

We are not quite there yet! Challenges:

- exploration vs exploitation (identifiability and persistent excitation)
- data noise and cost
- can we combine SYSID and RL effectively?

Our contribution

- Gros, S. and Zanon, M. Data-Driven Economic NMPC using Reinforcement Learning. IEEE Transactions on Automatic Control, 2020, in press.
- Zanon, M., Gros, S., and Bemporad, A. Practical Reinforcement Learning of Stabilizing Economic MPC. European Control Conference 2019
- Zanon, M. and Gros, S. Safe Reinforcement Learning Using Robust MPC. Transaction on Automatic Control, (under review).
- Gros, S. and Zanon, M. Safe Reinforcement Learning Based on Robust MPC and Policy Gradient Methods IEEE Transactions on Automatic Control, (under review).
- Gros, S., Zanon, M, and Bemporad, A. Safe Reinforcement Learning via Projection on a Safe Set: How to Achieve Optimality? IFAC World Congress, 2020 (submitted)
- Gros, S. and Zanon, M. Reinforcement Learning for Mixed-Integer Problems Based on MPC. IFAC World Congress, 2020 (submitted)

Thank you for your attention!