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Reinforcement Learning
@ model-free
@ optimal for the actual system
@ = sample-based stochastic optimal control
@ learning can be slow, expensive, unsafe
@ no stability guarantee (commonly based on DNN)

(Economic) Model Predictive Control
@ optimal for the nominal model
@ constraint satisfaction
@ can represent complex control policies
@ stability and recursive feasibility guarantees

Combine MPC and RL

@ simple MPC formulations as proxy for complicated ones
@ recover optimality, safety and stability for the true system
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The Basics

Assumption: the system is a Markov Decision Process (MDP)

@ state, action s, a
@ stochastic transition dynamics Plsi|s,a] <& sy =1(s,a,w)
@ scalar reward / stage cost L(s,a)
@ discount factor 0<~y<1
’—er Controller
a = mo(s)
RL s a
I System
[52) P[sy|s, a]
Goal:

@ learn the optimal policy
@ using no prior knowledge, observe

@ reward only
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Main Concepts

Optimal policy: LQR example:
m(s) = arg main L(s;a) +1E[Vu(si) [s, 4] P solves the Riccati equation
Optimal value function: K.,=(R+B"PB)Y'(S" +B'PA)
Vi(s) = L(s, m(s)) + YE[Vi(st) [ 5, 7 (s)] Tx(s) = —Kis

T
If we know Vi, we can compute 7y \ Vi(s)=s Ps+ Vo

but only if we know the model
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Optimal action-value function: Q. (s,a) = {j M {j + W
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LQR example:
P solves the Riccati equation
K, =(R+B"PB)*(S" + B'PA)
m(s) = —Kis
Vi(s)=s'Ps+ Vo

Qu(s,a) = {j : M {j +W

If we learn M directly, we do not
need a model!

How can we evaluate V, and Q*?J
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How does it work?

Policy Evaluation

e Monte Carlo
@ Temporal Difference

Policy Optimization
o Greedy policy updates
o c-greedy
e Exploration vs Exploitation

Abstract / generalize

o Curse of dimensionality
@ Function approximation

Q-learning

Policy search

5/27
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Policy Evaluation - Monte Carlo

Consider the discrete case first: only finitely many states s and actions a
Given policy 7, what are Vi, Q.7

Vi (s): Q(s, a):
@ pick random s, increase counter N(s) @ N(s,a)
@ compute cost-to-go @ Ci(s,a) =
Ci(s) =D L(s,n(s)) L(s,a)+ Y~ L(s,(s))
k=0 k=1
@ empirical expectation: @ empirical expectation:
N(s) N(s,a)
C,'(S, a) C,'(S a)
V(s) ~ —_— = !
)~ 2 ) 2™ 2 ysa)

Recursive formulation:

V(s) < V(s)+ ﬁ (X6 vis)

Alternative:

V(s) « V(s) +a (Z G — V(s))
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Policy Evaluation - Temporal Difference
Remember: Vi (s) = L(s,7(s)) + YE[Vx(s+) | s, 7(s)]
Idea of TD(0):

V(s) < V(s) + a(L(s, 7(s)) + v V(sy) — V(s))

@ TD-target: L(s,n(s)) + vV(ss+) is a proxy for infinite-horizon cost ¢
@ TD-error § = L(s,m(s)) +vV(sy) — V(s)

@ Sample-based dynamic programming

@ learn before the episode ends

°

very efficient in Markov environments

We can do the same for the action-value function:

Q(s,a) «+ Q(s,a) + a(L(s, a) + vQ(s4,7(s1)) — Q(s, a))

We can evaluate V; and Q-, but how can we optimize them? )
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Learning
Greedy policy improvement
@ model-based: 7'(s) = argmin, L(s,a) +~E[V(s:)]s, a]
@ model-free:  7'(s) = argmin, Q(s, a)
Problem:
@ keep acting on-policy, i.e., a = 7(s)
@ how to ensure enough exploration?
Simplest idea: e-greedy:

(s) = argmax, Q(s,a) withp=1—c¢
- AU{1,n,} with p=c

For any e-greedy policy , the e-greedy policy 7’ is an improvement, i.e.,
Vo (s) < Vir(s)

In order to get optimality we need to be GLIE

Greedy in the limit with infinite exploration, e.g., e-greedy with ¢ — 0
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Q-Learning (basic version)
Update the action-value function as follows:
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Q@-Learning (basic version)
Update the action-value function as follows:

d+ L(s,a)+7~ rr;in Q(st,a+) — Q(s, a)
Q(s,a) + Q(s,a) + ad

Curse of Dimensionality

@ in general: too many state-action pairs

@ need to generalize / extrapolate

Function Approximation

Features ¢(s, a) and weights 6 yield Qq(s,a) = 67 #(s, a). Weights update

0 < L(s,a) + vy min Qo(ss,at) — Qo(s, a)
at
0« 0+ a&VQQe(S, a)

@ this is a linear function approximation

@ deep neural networks are nonlinear
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Policy Search

Q-learning: fits E(Qp — Qx)>
@ no guarantee that 7y is close to 7,
@ what we want is ming J(mp) :=E 352 v*L(sk, mo(s«))

Policy Search parametrizes mg and directly minimizes J(mg):

00+ aVel

@ model-based: construct a model f and simulate forward in time:

B N
1 k i i i i i
S EEE (). = (). )

@ actor-critic (model-free): A(s,a) = Q(s,a) — V(s)
Deterministic policy : Vod = VomgVaiArg,,
Stochastic policy : Vod = Vg logmoArg,

e use, e.g., Q-learning for A, or V
o if you are careful: convergence to local min of J(my)
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Main issues

@ Can we guarantee anything?
o Safety
o Stability
e Optimality

@ Learning is potentially
@ Dangerous
o Expensive
o Slow

Prior knowledge is valuable

@ Why learning from scratch?
@ Can we use RL to improve existing controllers?

@ Retain stability and safety
@ Improve performance
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@ use a model to predict the future
@ constraint enforcement
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Optimal Control - Model Predictive Control (MPC)

@ use a model to predict the future
@ constraint enforcement

@ performance and stability guarantees

N—1
Qo(s,a) == Tin V() + Z Lo(x, u)
“ k=0

s.t. xo=s, U= a,
Xer1 = Fo(xx, uk),
he(xk, ux) <0,
XN € X%.
Optimality hinges on
@ quality of the model (how descriptive)
@ system identification (estimate the correct model parameters)
but then, if the model is not “perfect”
@ can we recover optimality through learning?
@ use MPC as function approximator
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Learn the true action-value function with MPC

@ inaccurate MPC model P[8; s, a] # P[s4]s, a]

Theorem [Gros, Zanon TAC2020]

Assume that the MPC parametrization (through 6) is rich enough.
Then, the exact V., Q«, 7« are recovered.

@ Sysld and RL are “orthogonal”
@ RL cannot learn the true model

N—1
. ¢
min Vo (xn) + Z Lo(x, u) Algorithmic framework:

X,u
k=
0 [Zanon, Gros, Bemporad ECC2019]

s.t. xo =s, ¢
@ Enforce Ly, Vy >0
Xi41 = To (X, ux),

ho(xk, ux) <0,
XN € Xg.

@ Can use condensed MPC formulation

@ Can use globalization techniques
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Economic MPC and RL

@ If Lo(s,a) > 0, then Vy(s) > 0 is a Lyapunov function
@ In RL we can have L(s,a) # 0= Vi(s) # 0

ENMPC theory:
@ if we rotate the cost we can have V,(s) = A(s) + Vo(s)
@ eg., if0<Lo(s,a) = L(s,a) — A(s) + A(f(s, a))
Therefore, use
N—1

Vi(s) = TT No(s) + Vi () + Z Lo(x, u)

s.t. xo =5,
Xir1 = fo(Xk, k),
ho(xk, ux) < 0,
XN € ng.

Enforce stability with Lg(s, a) > 0 and learn also Ag(s)

14 /27
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Evaporation Process

Model and cost

[ = ([5] - [2=]).

Bounds

X2 > 25%,
PIOO S 400 kPa7

Nominal optimal steady state

Xa2|
P,| 7 |49.743kPa|’

Nominal Economic MPC gain:

@ large in the nominal case

15/27

£(x, u) = something complicated.

40kPa < P, < 80kPa,
ono S 400kg/min.

P100 _ 191.713 kPa
F200 o 215.888kg/min ’

@ about 1.5 % in the stochastic case: cannot even guarantee to have any
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Evaporation Process

Reinforcement learning based on
A(xo) vE(xn)

min xOTH)\xo + h;I:XO + ¢ +ny<x,JvaxN + thN + cyr )

X,Uu,0

N—1 T
X X X
+;7k(|:ui:| H, |:Ui:| +h; |:uz:| +Cg+O'ZH;Jk+h;o'k)

£(xx 5,0 k)
s.t. xp =5,
Xk+1 = I‘-(Xk7 Uk) + cr,
u < uk <y,

1
X1 — ok < xx < Xu + Ok
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Evaporation Process

Reinforcement learning based on

A(xo) vE(xn)

min xOTH)\xo + h;I:XO + ¢ +ny<x,JvaxN + thN + cyr )

X,Uu,0

N—1 T
k(| Xk Xk T | Xk TyT T
+§7 (|:Uk:| HE |:Uk:| +hg |:Uk:|+C£+O'k HUO'k+hUO'k>

£(xx 5,0 k)
s.t. xp =5,

Xk+1 = I‘-(Xk7 Uk) + cr,

u < uk < Uy,

1
X1 — ok < xx < Xu + Ok

Parameters to learn: 0 = {Hx, hx, cx, Hyt, hye, cye, He, he, ce, cry X1, Xu }
Initial guess: 0 =1{0,0,0, Hyt,0,0, H,0,0,0, x, X, }

25 100
H\/f:I, H[:I7 )(1:|:100:|7 Xl,:|:80:|
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18/27

Ensure that 7(s) € S:

@ Penalize constraint violation

@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:
7y (x) = argmin ||u—mg|| st.ueS
u

@ cannot explore outside S = constrained RL problem

o Q-learning

@ projection must be done carefully
o DPG: Vomg V,A, L = VemgMV, A, L
°

SPG: 1. draw a sample; 2. project
o dirac-like structure on the boundary
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Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:

7y (x) = argmin ||u—mg|| st.ueS
u

@ cannot explore outside S = constrained RL problem
Q-learning
@ projection must be done carefully
DPG: Vomg VuA, L = VemgMV, A, L
SPG: 1. draw a sample; 2. project
o dirac-like structure on the boundary
@ use IP method for projection: ~ Dirac, but continuous
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Enforcing Safety [Gros, Zanon, Bemporad (IFAC2020,rev)]

Ensure that 7(s) € S:

@ Penalize constraint violation
@ violations rare but cannot be excluded
@ ok when safety not at stake

@ Project policy onto feasible set:

7y (x) = argmin ||u—mg|| st.ueS
u

@ cannot explore outside S = constrained RL problem
Q-learning
@ projection must be done carefully
DPG: Vomg VuA, L = VemgMV, A, L
SPG: 1. draw a sample; 2. project
o dirac-like structure on the boundary
@ use IP method for projection: ~ Dirac, but continuous
° VgJ(m;l) = VyglogmeV, A, L evaluate score function gradient
on unprojected sample

@ Safety by construction
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@ Robust MPC as function approximator
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Safe RL [Zanon, Gros (TAC rev.)], [Gros, Zanon (TAC,rev.)]
Robust MPC as function approximator

"]

@ Model used for data compression
@ Q-learning: no adaptation required
(]

Actor-critic:
@ best possible performance
@ constraints pose technical difficulties
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Safe RL [Zanon, Gros (TAC rev.)], [Gros, Zanon (TAC,rev.)]

@ Robust MPC as function approximator
@ Model used for data compression
@ -learning: no adaptation required

@ Actor-critic:
@ best possible performance
@ constraints pose technical difficulties

How to explore safely?
N—1

min d ' w + Vi (xn) + Z Lo(x, u)
X,u k:()
s.t. xo =5,

X1 = fo(xx, k),

ho(xk, ux) <0,

XN € Xg

Gradient d perturbs the MPC solution.
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Evaporation process
Nominal optimal steady state

X]
P,| = |49.743kPa)
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|
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Evaporation process
Nominal optimal steady state

X]
P,| = |49.743kPa)

@ Satisfy Xy > 25 robustly

|

Pi1oo
Faoo

|

|

191.713 kPa
215.888 kg/min

|

20/27



MPC-based RL 20/27

Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

Xl _ Pioo] [ 191.713kPa
P,| = |49.743kPa|’ Faoo| — |215.888kg/min| -
@ Satisfy Xy > 25 robustly

@ Adjust uncertainty set representation



MPC-based RL 20/27

Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

Xl _ Pioo] [ 191.713kPa
P,| = |49.743kPa|’ Faoo| — |215.888kg/min| -
@ Satisfy Xy > 25 robustly

@ Adjust uncertainty set representation
@ Adjust the RMPC cost



MPC-based RL 20/27

Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

Xl _ Pioo] [ 191.713kPa

Py| — |49.743kPal|’ Foo| ~ |215.888kg/min|
@ Satisfy Xy > 25 robustly
@ Adjust uncertainty set representation

@ Adjust the RMPC cost
@ Adjust feedback K



MPC-based RL

20/27
Safe Q-Iearning [Zanon, Gros (TAC,rev.)]

Evaporation process
Nominal optimal steady state

X> _ 25% P1oo _ 191.713 kPa

Py| — |49.743kPal|’ Foo| ~ |215.888kg/min|
@ Satisfy Xy > 25 robustly
@ Adjust uncertainty set representation

@ Adjust the RMPC cost
@ Adjust feedback K
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Safe exploration distorts the distribution
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Safe ACtOI’—Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

™ N
2) o % - \ Distribution of d, a
: s N 7 \
© A \
0] W

up

Deterministic PG Stochastic PG
Vol = VooV,  Anr, Vol = Vylogme &7,
~—
Advantage Function TD Error
Bias in V,Az,:

® E[a— mp(s)] #0
@ Covla — my(s)] — rank deficient
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Safe ACtOI’—Critic RL [Gros, Zanon (TAC,rev.)]

Safe exploration distorts the distribution

N AN
\ o fd
i \\ . % s \\ Distribution of d, a
® N\ \
u u

1 up

Deterministic PG Stochastic PG
Vol = VooV,  Anr, Vol = Vylogme &7,
~—
Advantage Function TD Error

@ sampling Vy log mg too expensive

Bias in V,Az,:
® E[a— mp(s)] 0 @ if action infeasible: resample
— T
@ Covl[a— my(s)] — rank deficient @ gradient perturbation is the solution

@ VJ more expensive than DPG
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0+ 0+ CM{&VQ Qe(s, a), Vgﬂ'evaA,ro, VgTrg(s-,.—e
Q-learning DPG SPG

lefel’entlate M PC [Gros, Zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute Vg Qo(s, a), Vomo(s), V.Ax,

Result from parametric optimization:

@ VyQo(s,a) = VoLy, Lo = Lagrangian of MPC
@ MVymy(s) = 66—’3, M, r = KKT matrix and residual
@ V., A, =v, v = multiplier of up = a

Derivatives are cheap!

@ VyLy much cheaper than MPC
@ M already factorized inside MPC

@ v is for free
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MPC SensitiVitieS [Gros, Zanon (TAC2020)], [Zanon, Gros (TAC,rev.)], [Gros, Zanon (TAC,rev.)]

0+ 0+ CM{&VQ Qe(s, a), Vgﬂ'gVaAﬂo, VgTrg(s.,.—e
Q-learning DPG SPG

Differentiate MPC (cros, zanon TAC2020], [Zanon, Gros, Bemporad ECC2019]

Need to compute Vg Qo(s, a), Vomo(s), V.Ax,

Result from parametric optimization:

@ VyQo(s,a) = VoLy, Lo = Lagrangian of MPC
@ MVymy(s) = %—’3, M, r = KKT matrix and residual
@ V., A, =v, v = multiplier of up = a

Safe RL:
@ V constraint tightening

Derivatives are cheap!

@ VyLy much cheaper than MPC

@ M already factorized inside MPC @ Actor-critic

O w s G Frae o Additional computations
o DPG cheaper than SPG
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ReaI-Time NMPC and RL [Zanon, Kungurtsev, Gros (IFAC2020,rev)]

Real-time feasibility: ==
@ NMPC can be computationally heavy
@ use RTI

Sensitivities:
@ formulae only hold at convergence
@ compute sensitivities of RTI QP

@ justified in a patfollowing framework “w

Evaporation process:
@ Similar results as fully converged NMPC

@ Gain ~ 15 — 20% over standard RTI T
-
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Can we handle mixed-integer problems?
@ RL was born for integer problems

@ Apply, e.g., SPG: expensive
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Mixed-Integer Problems [cros, Zanon IFAC2020,rev]
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Can we handle mixed-integer problems?
@ RL was born for integer problems

@ Apply, e.g., SPG: expensive

What about a combination of SPG and DPG?
@ separate continuous and integer parts
@ continuous: DPG
@ integer: SPG
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Mixed-Integer Problems [cros, Zanon IFAC2020,rev]

Can we handle mixed-integer problems?
@ RL was born for integer problems

@ Apply, e.g., SPG: expensive

What about a combination of SPG and DPG?
@ separate continuous and integer parts
@ continuous: DPG
@ integer: SPG

Real system:

Xk+1 = Xk + Uklk + Wk, Wy ~ L{[0,0.0S]

3 1 ; D[ — . C
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Conclusions

The goal:
@ simplify the computational aspects
@ provide safety and stability guarantees
@ achieve true optimality
@ self-tuning optimal controllers

We are not quite there yet! Challenges:
@ exploration vs exploitation (identifiability and persistent
excitation)
@ data noise and cost
@ can we combine SYSID and RL effectively?
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Our contribution

o
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Thank you for your attention!
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