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@ Linear system

@ Linear feedback ux =

stable if

@ How to choose K?

What about LQR?

min 3§j||s 1+ e 2
s,u 2 s kile kiR

s.t. X

O
Il

Sk+1 = Ask + Buy
—Ksk
sk+1 = (A — BK)sk = Aksk
max (|A(Ak)|) <1

Sk+1 = Asi + Buy, k>0

lim S = 0
k— o0
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@ Linear system

@ Linear feedback ux =

stable if

@ How to choose K?

What about LQR?

min 3§j||s 1+ e 2
s,u 2 s kile kiR

s.t. X

O
Il
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Sk+1 = Ask + Buy
—Ksk
sk+1 = (A — BK)sk = Aksk
max (|A(Ak)|) <1

Equivalent to solving the DARE
(discrete algebraic Riccati equation)

P=Q+ATPA— ATPBK
=(R+B"PB)"1BTPA

Sk+1 = Asi + Buy, k>0

lim S = 0
k— o0
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Note the equivalence

Horizon: oo

oo

2 2
D lseliy + lluxli
k=0

s.t. sp =X
Sk+1 = Ask + Buy, k>0

lim s, =0
k— o0

3
=1
N =

Horizon: N
1Y 1
. 2 2 2
min 5 37 sl + loeliy + 5 lswl
k=0
s.t. sp=Xx
Sk+1 = Ask + Buy, k=0,....,N—1

with N > 1 and P from the DARE.
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Note the equivalence

Horizon: oo Horizon: N

1 1Y 1
. 2 2 - 2 2 2
min §Z||5kHQ+HUkHR min EZHSk”Q+||“k||R+§H5NHP
k=0 k=0
s.t. sp =X = s.t. sp=X
Sk+1 = Ask + Buy, k>0 Sk+1 = Ask + Buy, k=0,...,N—1
lim s, =0
k—ro0 with N > 1 and P from the DARE.

The term 1||sy||7 is called cost to go



Numerical Methods - From Linear Feedback to MPC 4/28

Note the equivalence

Horizon: oo Horizon: N
1S 1 1
. 2 2 - 2 2 2
min §Z||5kHQ+HUkHR min EZHSkHQ+||uk||R+§H5NHP
k=0 k=0
s.t. sp =X = s.t. sp=X
Sk+1 = Asi + Buy, k>0 Sk+1 = Ask + Buy, k=0,....,N—1
lim s, =0
k—o0 with N > 1 and P from the DARE.

The term 1||sy||7 is called cost to go

If we don’t want to solve the DARE
@ Choose P large enough
@ Solve the finite horizon problem: Quadratic Program (QP)
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At each sampling instant /, solve the QP

N—-1

.1 2 2, 1 2
min 5 2 sl + e+ Slsul

st. sp = X;

Sk+1 = Ask + B ug
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At each sampling instant /, solve the QP

N—1

.1 2 2 1 2

min  — 5 + ||u + —|ls 1

pin 5 2 sl + ol + 5wl R
=0 w 2

st. sp = X; = st. Gw+g=0

Sk+1 = Ask + B ug

Lagrangian Function

1
L(w, ) = §WTFW+ fTw =T (Gw +g)

First order necessary condition (FONC)

VL(w,\) =0 = {

Solve a linear system:
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Treating Constrained Systems

N
. 1 2 2, 1 2
min §Z||Sk||o+ lluillz + 5 lIswllp
k=0
st. sp =X

Skr1 = Ask + B uy

@ LQR: unconstrained
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Treating Constrained Systems

N—

o1 2 2 1 2

min §§|lsk||o+ lluillz + 5 lIswllp
st. sp =X

Skr1 = Ask + B uy
Csk+Duc+c>0

@ LQR: unconstrained

6/28

@ MPC: state and input constraints
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Treating Constrained Systems
1 1
: 2 2 2 .
min 3 ; [Iskllo + lukllz + EHSNHP @ LQR: unconstrained
- @ MPC: state and input constraints
st so =X 2 .
@ ||sn|| only approximates the cost

Skr1 = Ask + B uy to go
Csk+Duc+c>0
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Treating Constrained Systems

N—
o1 2 2 1 2
min §Z||5k||o+ lluillz + 5 lIswllp
k=0
st. sp =X

Skr1 = Ask + B uy
Csk+Duc+c>0

Handle explicitly:

6/28

@ LQR: unconstrained
@ MPC: state and input constraints

@ ||sy||» only approximates the cost
to go

@ Actuator limitations, e.g. saturation of an input signal

@ State constraints, e.g. concentration of a reactant

@ Mixed state-input constraints

MPC yields a
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At each sampling instant /, solve the QP

N 2 2 1 2
7in 3 2 el + luulfe + gl mn LR T
st. sp=X; < st. Gw+g=0

Sk+1 = Ask + B ug >0
C5k+Duk+C20
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At each sampling instant /, solve the QP
Nt 1
P 2 2 1 2
min 5 ; lIsillg + llucllz + 5 lisnlle . %WTFer T
- w

st. sp=X; < st. Gw+g=0
Sk+1 = Ask + B ug >0
C5k+Duk+C20

Lagrangian Function

1
Lw, A ) = SwT Fw+ fTw = 3T(Gw + g) = u7( )
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At each sampling instant /, solve the QP
Nt 1
P 2 2 1 2
min 5 ; lIsillg + llucllz + 5 lisnlle . %WTFer T
- w

st. sp=X; < st. Gw+g=0
Sk+1 = Ask + B ug >0
C5k+Duk+C20

Lagrangian Function

1
Lw, A ) = SwT Fw+ fTw = 3T(Gw + g) = u7( )

First order necessary condition (FONC): the KKT conditions

Fw+f—-G'A—H"pu=0
Gw+g=0
VL(w,\,pu)=0 =
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Fw+f—-G'AX—H p=0
Gw+g=0



Numerical Methods - From Linear Feedback to MPC 8/28
Solving the KKT conditions

Fw+f—-G'AX—H p=0
Gw+g=0

The Active Set method
Let A be the set of active constraints

Fw+f-—G'A—Hpu=0 @ Guess A
Gw+g =0 @ Solve the AS-KKT system
@ Update A
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Solving the KKT conditions

Fw+f—-G'AX—H p=0
Gw+g=0

The Active Set method
Let A be the set of active constraints

Fw+f—G'A—H =0 @ Guess A

Gw+g =0 @ Solve the AS-KKT system
@ Update A

The Interior Point method

Fw+f—G A—H =0
@ Ch

Gw+g—0 Choose 7 “big
@ Solve the IP-KKT system
@ Perform linesearch
@ update 7
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Convex QP:
@ No inequalities: solve a linear system
@ Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:
@ Active-set
@ Interior-point
@ First-order methods (difficult to use for nonconvex problems)
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QP solvers for MPC

Convex QP:
@ No inequalities: solve a linear system
@ Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:
@ Active-set
@ Interior-point
@ First-order methods (difficult to use for nonconvex problems)

Many reliable QP solvers available:
@ gpOASES, qpDUNES
@ FORCES, HPMPC / HPIPM
@ ODYSQP

@ many others
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QP solvers for MPC
Convex QP:

@ No inequalities: solve a linear system
@ Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:
@ Active-set
@ Interior-point
@ First-order methods (difficult to use for nonconvex problems)

Many reliable QP solvers available:  Condensing

@ gpOASES, qpDUNES @ Eliminate states (cost N?)
@ FORCES, HPMPC / HPIPM @ Solve dense QP
@ ODYSQP Sparse linear algebra

@ many others @ Exploit the gp structure
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Linear system?

Linear MPC at time /

N N—1
. 2 2
T"sn kzo Isk — xrefllg + ;) [luk — urer &

st. Skr1 = Ase+ Bug
Csy+Dug >0,
S0 = X;
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Linear system?

Linear MPC at time /

N N—1
min Z ||5k - Xref”%? + Z ”uk - ”ref“%?
k=0 k=0

st. Skr1 = Ase+ Bug
Csy+Dug >0,

so =X

Linear dynamics
Linear path constraints

Solve a QP at each iteration

Extremely fast for small to
medium scale problems



Numerical Methods - From MPC to NMPC

Linear system? Nonlinear system?

Linear MPC at time |/ @ Linearize at X,er, Uref, USE

linear MPC

N N—1
Z [lsk — Xref”%? + Z [luk — uref“%?
k=0 k=0

Skt1 = Ask + B ug
Csy+Dug >0,

so =X

Linear dynamics
Linear path constraints
Solve a QP at each iteration

Extremely fast for small to
medium scale problems
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Linear system?

Linear MPC at time /

min
u,s

s.t.

N N—1
Z [lsk — Xref”%? + Z [luk — ”ref“%?
k=0 k=0

Skt1 = Ask + B ug
Csy+Dug >0,

so =X

Linear dynamics
Linear path constraints
Solve a QP at each iteration

Extremely fast for small to
medium scale problems

Nonlinear system?

Linearize at Xyef, Urer, USE
linear MPC

or...

Nonlinear MPC at time /

min
u,s

s.t.

N N—-1
Z lIsk — Xref||2Q + Z lluk — uref”%(’
k=0 k=0

Sk41 = f (sk, k)
h(sk, ux) >0,
S0 = Xi
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Linear system? Nonlinear system?

Linear MPC at time |/ @ Linearize at Xef, Uref, USE
. o linear MPC

T,isn kzo ||5k - Xref”%? + ;) ”uk - ”ref”%? @ or...

S
Co+Dup >0, Nonlinear MPC at time |

o N N—1
So = X; - 2 2
Joomin D llse— xerlly + D lluk — uerlik
k=0 k=0
Linear dynamics st Sera = f (Sk, k)
. . h(Sk uk) >0
Linear path constraints ’50 — 2 ,
- M

Solve a QP at each iteration

Problem is non-convex,
use NLP solver

Extremely fast for small to
medium scale problems
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SQP for NMPC in a nutshell
NMPC at time i
N N—1
min D sk = xeer g + D lluk — el
’ k=0 k=0

s.t.  Skp1 = f(Sk, uk)
h(sk, ux) > 0,

So = Xj

v

Iterative procedure (at each time /):
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SQP for NMPC in a nutshell Quadratic Problem Approximation

NMPC at time i QP (for a given s, u)
As ]+ [ As

[ As  Au ] [Au Au]

) 1
min =
Au,As 2

N N—-1
Tlsn Z ||5k - Xref”%;} + Z ||uk - uref”%(’
’ k=0 k=0

st Asgg = + Asy + Auy,
s.t.  Skp1 = f(Sk, uk)
h(sk, ux) > 0, + Asct Ay 20,
So = X; S0 =%
i

Iterative procedure (at each time /):

@ Given current guess s, u
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Numerical Methods - From MPC to NMPC

SQP for NMPC in a nutshell Quadratic Problem Approximation

NMPC at time i QP (for a given s, u)

&y B 1 As T[ As
. 2 2 min - As Au |B +J [ ]
min Y lse — xerllo + Y luk — uerllR| AR 2 [ ] [ Au ] Au
u,s
k=0 k=0 A . BfA afA
st. Asgiq =f+ —As + —Auyy,
s.t.  Skp1 = f (sk, Uk Os Ou
( , ) h BhA ahA >0
h(Sk,Uk)Zo, +g Sk+a st
So = Xi 0=5%
i

Iterative procedure (at each time /):

@ Given current guess s, u
@ Linearize at s, u: need 2" order derivatives for B
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Numerical Methods - From MPC to NMPC

SQP for NMPC in a nutshell Quadratic Problem Approximation

NMPC at time i QP (for a given s, u)

&y B 1 As T[ As
. 2 2 min - As Au |B +J [ ]
min E sk — Xref”Q + E [k — uref”R Au,As 2 [ ] [ Au ] Au
u,s
k=0 k=0 A . BFA afA
st. Asgiq =f+ —As + —Auyy,
s.t.  Skp1 = f (sk, Uk Os Ou
( , ) h BhA ahA >0
h(Sk,Uk)Zo, +g Sk+a st
So = Xi 0=5%
i

Iterative procedure (at each time /):

@ Given current guess s, u
@ Linearize at s, u: need 2" order derivatives for B

© Make sure Hessian B = 0: avoid negative curvature
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SQP for NMPC in a nutshell
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Quadratic Problem Approximation

NMPC at time i QP (for a given s, u)

N N—-1
min > lse — xerllp + > ik — urerl|
22 o k=0

s.t.  Skp1 = f(Sk, uk)
h(sk, ux) > 0,

S0 = Xi

v

min
Au,As

s.t.

1 As T[ As
E[As Au]B[Au]+J[Au

of of
Aspiq =+ gAsk + aAuk,

oh oh
h+ —Asy + —Au, >0,
ds Ou

s =X

]

Iterative procedure (at each time /):

@ Given current guess s, u

@ Linearize at s, u: need 2" order derivatives for B

© Make sure Hessian B = 0: avoid negative curvature

© Solve QP
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SQP for NMPC in a nutshell
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Quadratic Problem Approximation

NMPC at time i QP (for a given s, u)

N N—-1
min > s — xerllo + D luk — ueerl|R
22 o k=0

s.t.  Skp1 = f(Sk, uk)
h(sk, ux) > 0,

S0 = Xi

v

min
Au,As

s.t.

As T As
[ As Au]B[Au]+J[Au

1
2
A o BFA o BFA
G| = — Asi + — Auy,
k+1 s k 9u 'k
oh oh
h+ —Asy + —Au, >0,
ds Ou

s =X

]

Iterative procedure (at each time /):

@ Given current guess s, u

@ Linearize at s, u: need 2" order derivatives for B

© Make sure Hessian B = 0: avoid negative curvature

© Solve QP

@ Globalization (e.g. line-search): ensure descent, stepsize « € (0, 1]



Numerical Methods - From MPC to NMPC 11/28

SQP for NMPC in a nutshell Quadratic Problem Approximation
NMPC at time i QP (for a given s, u)
Wy B . 1 As T[ As

min >l —welly + 3 o — |, 30 e do[ & ][R ]

k=0 k=0 t. As fr P g+ Pn

s.t. k = o k a k>
s.t.  Skp1 = f(Sk, uk) + Os du
h BhA ahA >0
h(sk, ux) > 0, Ttk T g k=
So=Xi s =%
i v

Iterative procedure (at each time /):

@ Given current guess s, u

@ Linearize at s, u: need 2" order derivatives for B
© Make sure Hessian B = 0: avoid negative curvature
© Solve QP

@ Globalization (e.g. line-search): ensure descent, stepsize « € (0, 1]

4
@ Update { le+ ] = [ S ] +a[ ﬁz } and iterate

u
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Linear system )

Continuous time:

x(t) = Acx(t) + Bou(t)

Discrete time:

Skr1 = Asc+ Buy

Discretization over a time interval t € [ty, tiy1], input u(t) = uk

A— eAc(tkH*fk)’

tit1
B= / 7 Bodr

tx
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Linear system ) Nonlinear system )

Continuous time:

X(£) = Acx(t) + Beu(t) () = £ (x(£), u(t))

Discrete time:

Sk41 = Asc + B uk Sk1 = F (Sk, uk)

Discretization over a time interval t € [ty, tyy1], input u(t) = u

A— eAc(tHrtk)’ Integration of function . can be
ten complex, possibly iterative implicit
B:/ AT BLdr (algorithm) 1!

tx
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Integration (with sensitivities)

Consider x = fe(x, u)
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Integration (with sensitivities)

Consider x = fe(x, u)
Discretize with explicit Euler:

_dx _da

= hﬁ: ) ) A - q_
X1 (x0, ) + x0 1 ax du
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Integration (with sensitivities)

Consider x = fe(x, u)

Discretize with explicit Euler:

dX1 dX1

= hﬁ: ) ) AL = o0 B=—
X1 (x0, ) + X0 1 ax 1 du
xo = hfe(xa, u) + xa, A = de B, = de
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Integration (with sensitivities)

Consider x = fe(x, u)

Discretize with explicit Euler:

dx; dxq

= hﬁ: ) ) AL = ’ B =
X1 (x0, ) + x0 1 ax 1 Qv
dxz dx2
= hf.(x, , Ay = =2 B, — -2
X2 (x1, u) + x1 2 a0 2 du

Sensitivities wrt states:
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Integration (with sensitivities)

Consider x = fe(x, u)

Discretize with explicit Euler:

dx; dxq

= hﬁ: ) ) AL = ’ B =
X1 (x0, ) + x0 1 ax 1 Qv
dxz dx2
= hf.(x, , Ay = =2 B, — -2
X2 (x1, u) + x1 2 a0 2 du

Sensitivities wrt states:

_ 8X1

A = %
! aXO

= (I + hVfe(x0, u))
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Integration (with sensitivities)

Consider x = fe(x, u)

Discretize with explicit Euler:

_ _da _da
x1 = hfe(xo, u) + xo, AL = o’ B, = du
_ _ de _de
X2 = hfo(x1, u) + xi, A = o’ B, = du
Sensitivities wrt states:
8X1
A =(/ h Xf )
L= 5L (14 W, w)
A= 220 (b £, 1) A

6X1 aXo
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Integration (with sensitivities)

Consider x = fe(x, u)

Discretize with explicit Euler:

%1 = hfi(xo, u) + %o, A= 3—2, B~ G
x2 = hi.(x1, u) + x1, = B =5
Sensitivities wrt states:
A = gz = (I + hV.fe(x0, u))
A = gﬁ g;l) = (I + hVf(x1, 1)) As

For the controls it's a bit trickier:
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Integration (with sensitivities)

Consider x = fe(x, u)

Discretize with explicit Euler:

_ _ da _da
x1 = hfe(xo, u) + xo, AL = o’ B, = du
_ _dx _dx
X2 = hfo(x1, u) + xi, A = o’ B, = du
Sensitivities wrt states:
Ox:
A= ax; = (I + hVxf.(x0, u))
8X2 8X1 _
Ay = aX1 aXo (I + AVt (X17 U))
For the controls it's a bit trickier:
B = 20 = 4V, f (0, u)

du
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Integration (with sensitivities)

Consider x = fe(x, u)

Discretize with explicit Euler:

dx; dxq

= hﬁ: ) ) AL = ’ B =
X1 (x0, ) + x0 1 ax 1 Qv
dxz dx2
= hf.(x, , Ay = =2 B, — -2
X2 (x1, u) + x1 2 a0 2 du

Sensitivities wrt states:

8X1 _

A1 aXO (I —|— hVXf (X()7 ))
8X2 8X1 _

Ay = aX1 aXo (/ + AVt (X17 U))

For the controls it's a bit trickier:

o
B = 8—’3 = hVuf.(x0, )

8X2 aXQ aX1

B2 = E =+ 87)(1% = hvuﬁ;(X]_, U) + (I -+ hvf;;(Xl7 U)) Bl
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There are many numerical schemes:
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Integration (with sensitivities)

There are many numerical schemes:
@ Explicit Euler is usually not the most efficient method! Inaccuracy: O(h)

@ Explicit Runge-Kutta of order 4 is rather successful. Inaccuracy: O(h*)
h
ki = fo(x, u) ko = £ X+§k1,u
h
ks = f; X+§k2,u k4:fc(X+hk3,u)

h
X+:X+6(k1+2k2+2k3+k4)
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Integration (with sensitivities)

There are many numerical schemes:
@ Explicit Euler is usually not the most efficient method! Inaccuracy: O(h)

@ Explicit Runge-Kutta of order 4 is rather successful. Inaccuracy: O(h*)
h
ki = fo(x, u) ko = £ X+§k1,u
h
ks = f; X+§k2,u k4:fc(X+hk3,u)
+ h
X :X+6(k1+2k2+2k3+k4)

@ Implicit schemes have desirable properties (stiff systems)
Simplest example (implicit Euler): x™ = x + hf.(x", u)
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Integration (with sensitivities)
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Integration (with sensitivities)

There are many numerical schemes:
@ Explicit Euler is usually not the most efficient method! Inaccuracy: O(h)

@ Explicit Runge-Kutta of order 4 is rather successful. Inaccuracy: O(h*)
h
ki = fo(x, u) ko = £ X+§k1,u
h
ks = f; X+§k2,u k4:fc(X+hk3,u)
+ h
X :X+g(k1+2k2+2k3+k4)

@ Implicit schemes have desirable properties (stiff systems)
Simplest example (implicit Euler): x™ = x + hf.(x", u)

@ Collocation = Implicit Runge-Kutta

@ Exponential integrators, e.g.

h
xt = Ax+ Bu, A=e"Vxklen) g / eVl g £ (x, u)dT
0
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How to Discretize the System?

@ Single Shooting:

From x(t) integrate the system on the whole horizon
— continuous trajectory

s9 = x(21y)

£20.05(- s1 = 2(Ty)
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How to Discretize the System?

@ Single Shooting:
From x(t) integrate the system on the whole horizon
— continuous trajectory
@ Multiple Shooting:

From x(tx) integrate the system on each interval separately
— discontinuous trajectory

f(s0,u0) = xo(T5) f(s1,u1) = z1(75)

£30.0551~
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How to Discretize the System?

@ Single Shooting:
From x(t) integrate the system on the whole horizon
— continuous trajectory
@ Multiple Shooting:

From x(tx) integrate the system on each interval separately
— discontinuous trajectory

£30.0551~

s1-f (80, up) so-f(s1,u1)
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— Condensing: reduce to the size of Single Shooting (using the
dynamic constraints)

— Efficient Sparse Linear Algebra can be very effective, especially for
long horizons



Numerical Methods - From Continuous Time to Discrete Time 17,2

Multiple Shooting vs Single Shooting
@ Better: unstable systems

@ Better: initialization of states at intermediate nodes

° : leads to bigger QP /NLP
e S. Shooting:  nx+ (N — 1)n, opt. vars (xo, to, U1, ..., UnN—1)
e M. Shooting: Nny + (N — 1)n, opt. vars (xo, Uo, X1, U1, . . . , XN)
@ Good news!: after integration, all xx, Kk =1,..., N can be eliminated

— Condensing: reduce to the size of Single Shooting (using the
dynamic constraints)

— Efficient Sparse Linear Algebra can be very effective, especially for
long horizons

Continuity conditions:

@ S. Shooting: imposed by the integration
e M. Shooting:  imposed by the QP/NLP
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Let’s get a closer look at SQP

QP (for a given s, v)

[ as Au]B[As]+JT[

min
Au

1
Au,As 2

of of
st. Asgq =f+ —As + —Auyy,
s du

Oh Oh
h+ —Asg + —Au >0,
Js Ou

s =X

As
Au

Linearize

@ f: evaluate integrator

of  Bf.
o D57 Bu-
@ h: evaluate nonlinear function
°

%7 %: differentiate nonlinear function

differentiate integrator

o J=2w'diag(Q,...,Q,R...,R)

B:diag(Q,...,Q,R...,R)+<)\,g—;’;>+<u

8%h _| S
73W2>) W_|:Ll:|
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QP (for a given s, u)

1 As T[ As
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Ensure B >~ 0
@ Exact Hessian: add curvature to the negative directions
Quadratic convergence
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@ BFGS update: Byy1 = Bk + o B0
Superlinear convergence
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Let’s get a closer look at SQP

QP (for a given s, u)

[ as Au]B[ﬁfl]JrJT[ﬁj]

X 1
min —
Au,As 2

of of
st. Asgq =f+ —As + — Ay,
s du

Oh Oh
h+ —Asy + — Ay >0,
s Au

s =X

Ensure B >~ 0
@ Exact Hessian: add curvature to the negative directions
Quadratic convergence

T
Byoo By + pudd
ol

@ BFGS update: Byy1 = Bk + o B0
Superlinear convergence

@ Gauss-Newton approximation: B ~ J7 J (for linear MPC it is exact!)
Linear convergence
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Let’s get a closer look at SQP

QP (for a given s, u)

min [ as Au]BI:ﬁZ]JrJT[ﬁi]

1
Au,As 2

of of
st. Asgq =f+ —As + —Auyy,
s du

Oh Oh
h+ —Asg + —Au, >0,
Js Ou

s =X

Iterate to convergence
@ All previous steps are repeated until convergence!
@ Computations can become very long

@ Cannot apply the control instantaneously
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Can we exploit the MPC structure to be faster?

What about:
@ 1 Newton step

@ |Initial value embedding:

So = X; as a constraint
@ No globalization

@ Gauss-Newton Hessian
approximation

Result:

@ Converge while the system evolves

no need to iterate

faster convergence, clever
computations

need to enforce sp = X;

only 1° order derivatives,
Hessian B > 0

next SQP iteration takes place on the new problem X1
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What about:
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@ |Initial value embedding: — faster convergence, clever
Sp = X; as a constraint computations
@ No globalization — need to enforce sp = X;
@ Gauss-Newton Hessian — only 1* order derivatives,
approximation Hessian B > 0
Result:

@ Converge while the system evolves
next SQP iteration takes place on the new problem X1

@ Need to have a good initial guess
better to shift (to be continued...)
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@ |Initial value embedding: — faster convergence, clever
Sp = X; as a constraint computations
@ No globalization — need to enforce sp = X;
@ Gauss-Newton Hessian — only 1* order derivatives,
approximation Hessian B > 0
Result:

@ Converge while the system evolves
next SQP iteration takes place on the new problem X1

@ Need to have a good initial guess
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with a generalized tangential predictor



Numerical Methods - The Real Time lteration Scheme 1928

Can we exploit the MPC structure to be faster?

What about:
@ 1 Newton step — no need to iterate
@ |Initial value embedding: — faster convergence, clever
Sp = X; as a constraint computations
@ No globalization — need to enforce sp = X;
@ Gauss-Newton Hessian — only 1* order derivatives,
approximation Hessian B > 0
Result:

@ Converge while the system evolves
next SQP iteration takes place on the new problem X1

@ Need to have a good initial guess
better to shift (to be continued...)

@ We are essentially doing path-following
with a generalized tangential predictor

Under some (mild) conditions, the SQP solution is closely tracked
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Standard SQP
NMPC at time i

N N—1
min Z llsk — Xrer |2 + Z ke — urer ||
e k=0 k=0

s.t. Sk41 = f (Sk, uk)
h (Sk, uk) >0,

So = Xi

Iterative procedure (at each time i):
@ Given current guess s, u

@ Linearize at s, u

© Make sure Hessian B = 0

© Solve QP

© Globalization (e.g. line-search)
@ Update and iterate

20/28
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Standard SQP Real Time lterations

NMPC at time i

N N—-1 1 As T[ As
. 2 2 mn =[ As Au JTJ[ ] +J [ ]
min > [l — xerllo + Y llue — werl[z| AR 2 [ ] Au Au
u,
= = of of
k=0 k=0 st. Asgyp =f+ B—Ask aF a—Auk
sit. Skr1="F(sk,u N v
k+1 (Sk, k) b P O
— As —Auy .
h(5k7 Uk) > 0, Os k Ou L=

~ =5
S0 = Xj S0 i

Iterative procedure (at each time i):
@ Given current guess s, u

@ Linearize at s, u

© Make sure Hessian B = 0

© Solve QP

© Globalization (e.g. line-search)
@ Update and iterate
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Standard SQP Real Time lterations

NMPC at time j

N ] 1 As T[ As
. 2 2 min [ as Au U7y [ ] +J [ ]
min > [l — xerllo + Y llue — werl[z| AR 2 [ ] au au
u,
=l = of of
k=0 k=0 st. Asgyp =f+ B—Ask + 8—Auk
s.t. Skr1 = f(sk, uk) s u

oh oh
h (sk, ux) > 0, h+ o Bsc+ - Dug >0,
So = X; | s =% |

Iterative procedure (at each time i): Preparation Phase

@ Given current guess s, u Without knowing X;

@ Linearize at s, u @ Linearize

© Make sure Hessian B > 0 @ (Gauss-Newton = B > 0)

Q Solve QP @ Prepare the QP

© Globalization (e.g. line-search)
@ Update and iterate
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Standard SQP Real Time lterations

NMPC at time j

N ] 1 As T[ As
. 2 2 min [ as Au U7y [ ] +J [ ]
min > [l — xerllo + Y llue — werl[z| AR 2 [ ] au au
u,
=l = of of
k=0 k=0 st. Asgyp =f+ B—Ask + 8—Auk
s.t. Skr1 = f(sk, uk) s u

oh oh
h(Sk,Uk) ZO’ h+ gAskJraAukzO,
so = Xi k.
v ”
Iterative procedure (at each time i): Preparation Phase

@ Given current guess s, u Without knowing %;

L o Lineari
@ Linearize at s, u Linearize

© Make sure Hessian B > 0 @ (Gauss-Newton = B > 0)
Q Solve QP @ Prepare the QP

© Globalization (e.g. line-search) Feedback Phase:

© Update and iterate @ Solve QP once X; available
— same latency as linear MPC
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Lincar MPC st time |

N N
min D s = el + [l — wrer % min D llsk = xerll + Il — wrer 7
k=0 k=0
s.t.  Skr1 = Aksk + Bruk st. s =1 (Sk, uk)
Cisk + Drug > 0, h(Sk, uk) >0,
so =X So = Xi
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Linear MPC at time i

N N
min D llsk = xrer I + [l — urer I min D llske = xeerli + llux — urer I
k=0 k=0
s.t.  Skr1 = Aksk + Bruk st. s =1 (Sk, uk)
Cisk + Drux > 0, h(Sk, uk) >0,
So = Xi So = Xi

At each time i:

@ Solve the QP

At each time ;:

@ Solve the QP
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Linear MPC at time i

N
min > flsi = xer g + llux — urer 7
’ k=0

s.t.  Sky1 = Aksk + Brug
Cisk + Drux > 0,

S0 = X;

N
min > flsk = xer [ + lluk — urer &
’ k=0

s.t.  Sk41 = f(Sk, uk)
h (sk, Uk) 2 07

So = Xi

At each time /:
@ Solve the QP
Q Wait

At each time ;:
@ Solve the QP

@ Compute the new linearization
of the constraints

© Prepare the new QP
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Linear MPC at time j

N
min > flsi = xer g + llux — urer 7
’ k=0

s.t.  Sky1 = Aksk + Bruk
Cisk + Drux > 0,

S0 = Xi

N
min > flsk = xer [ + lluk — urer &
’ k=0

s.t.  Sk41 = f(Sk, uk)
h(sk, ux) > 0,

S():)?,'

At each time /:
@ Solve the QP
Q Wait

21/28

At each time ;:
@ Solve the QP

@ Compute the new linearization
of the constraints

© Prepare the new QP

RTI differs from linear MPC in the sense that the constraints
are re-linearized at each time instant on the current
trajectory rather than only once on the reference trajectory
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Embedded Solver

RTI at time /

N
. 2 2
min E sk — xrerllQ + [lux — urer|[& Properties:
k=0
o Fi . .
ot sey—f (Sk, Uk) Fixed problem dimensions

h (s, ux) >0 @ Specific structure

So = Xi
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Embedded Solver

RTI at time /

N
min > " llsk = xrer 1S + llue — urer |7
’ k=0
st. sk =1 (Sk7 Uk)
h (sk, ux) > 0,

So = Xi

Tailored C code

@ Exploit the structure and
minimize number of operations

@ No dynamic memory allocation

@ Minimize branching in the
exported code

@ Optimized linear algebra routines

22/28

Properties:
@ Fixed problem dimensions

@ Specific structure
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Embedded Solver

RTI at time /

N
. 2 2
min kz_o sk — xrerllQ + [lux — urer|[& Properties:
@ Fi [ i
st sees = f (56, k) Fixed problem dimensions
h (s, ) > 0, @ Specific structure
So = Xi
o

Tailored C code
@ Exploit the structure and ACADO / ACADOS

minimize number of operations @ Multiple shooting

@ N namic memory all ion . . .
o dynamic memory allocatio @ Real time iterations

@ Minimize branching in the
exported code

@ Optimized linear algebra routines
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Importance of the Initial Guess

@ RTI (single Newton step): 1% order correction
— ||[5, Ll] - [5*7 U*]” = o(eéuess)

@ Guess: shift the solution at the previous step

Guess error e small if...

x e e . . s @ (v 1,51} close to {u'~1" s 1"}

i oi
4 @ s close to X
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Importance of the Initial Guess

@ RTI (single Newton step): 1% order correction
— ||[5, Ll] - [5*7 U*]” = o(eéuess)

@ Guess: shift the solution at the previous step

Guess error e small if...
05
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Importance of the Initial Guess

@ RTI (single Newton step): 1% order correction
— ||[5, Ll] - [5*7 U*]” = o(eéuess)

@ Guess: shift the solution at the previous step

Guess error e small if...
05
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Importance of the Initial Guess

@ RTI (single Newton step): 1% order correction
— ||[5, Ll] - [5*7 U*]” = o(eéuess)

@ Guess: shift the solution at the previous step

Guess error e small if...
05
% o . . o BT
+ s & ¢ ° @ {v 1 s 1}closeto {u'~1 s~}
0.5
E Q s close to X'
0 0.5 1 15 2 25 3 35 4 45
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Importance of the Initial Guess

@ RTI (single Newton step): 1% order correction
— ||[57 Ll] - [5*7 U*]” = o(eéuess)

@ Guess: shift the solution at the previous step

1 Guess error e small if...
05 4

s R @ (v 1,51} close to {u'~1" s 1"}

i oi
4 ] @ s close to X

Key for algorithmic reliability
05

@ Sample fast enough
@ Warm start
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Tuning: Trial-and-error, experience-based
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Tuning: Trial-and-error, experience-based
@ Positive-definite cost

@ not necessary, but recommended
o helps convergence

@ For pure setpoint tracking

© vuse a scaled identity W, ; = 072, where o; = range of state i
@ simulate and adjust the weights as W;; = w,-afz
@ iterate until performance is satisfactory

@ If you have a local linear controller you wish to imitate
@ controller matching for feedback K [zanon,Bemporad, w.i.p.]

min 68—«
s.t. P=Q+ATPA— (ST +ATPB)K
(R+ATPB)K =S+ BTPA
Bl = W = al

where W =

24 /28
Q ST
S R
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Tuning: Trial-and-error, experience-based
@ Positive-definite cost

@ not necessary, but recommended
o helps convergence

@ For pure setpoint tracking

© vuse a scaled identity W, ; = 072, where o; = range of state i
@ simulate and adjust the weights as W;; = w,-afz
@ iterate until performance is satisfactory

@ If you have a local linear controller you wish to imitate
@ controller matching for feedback K [zanon,Bemporad, w.i.p.]

min 68—«
s.t. P=Q+A"PA—(ST+A PBK where w—| @ S

(R+ATPB)K =S+ B"PA S R
Bl = W = al

@ If there is a clear “economic” objective
@ automatic tuning [Zanon, Gros, Diehl, JPC2016]
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Path constraints might become infeasible

N N—1
min Z llsk — xee || + Z lluk — uref ||
" k=0

s.t. Sk41 = f(Sk, uk)
h (sk, ux) >0,

S =X
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Path constraints might become infeasible

N N—1
min Z llsk — Xeef || + Z lluk — urer|| R @ % imposed by the (perturbed)
I k=0 system
st sky1 = f(sk, uk) @ perturbations might make
h(sk, uk) >0, h (sk, ux) > 0 infeasible

Sy =
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Handling Infeasibility

Path constraints might become infeasible

N N—1
min Z Ik — x,efH%) + Z lux — u,efo? @ % imposed by the (perturbed)
I k=0 system
st sky1 = f(sk, uk) @ perturbations might make
h(sk, uk) >0, h (sk, ux) > 0 infeasible
S0 = @ limited controllability of h (sk, uk)

at low k
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Handling Infeasibility

Path constraints might become infeasible

N N—1
min Z Ik — x,ef||%) + Z [lux — u,ef||f? @ % imposed by the (perturbed)
S k=0 system
st sky1 = f(sk, uk) @ perturbations might make
h(sk, uk) >0, h (sk, ux) > 0 infeasible
S0 = X @ limited controllability of h (s, ux)
at low k

Slack Variables Reformulation

N N—-1
min > [lsk = xrer[[a + D ke — terl|R + W
B k=0

s.t. Skp1 = f(Sk, uk)
h(sk,uk)Z—v, VZO
So =%
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Handling Infeasibility

Path constraints might become infeasible

N N—1
min Z Ik — x,ef||%) + Z [lux — u,ef||f? @ % imposed by the (perturbed)
S k=0 system
st sky1 = f(sk, uk) @ perturbations might make
h(sk, uk) >0, h (sk, ux) > 0 infeasible
S0 = X @ limited controllability of h (s, ux)
at low k

Slack Variables Reformulation

N N—-1
min > [lsk = xrer[[a + D ke — terl|R + W
B k=0

@ No effect for h(sk,ux) >0
st. s =f (Sk, uk)

h(sk,uk)Z—v, VZO
So =%
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Handling Infeasibility

Path constraints might become infeasible

N N—1
min Z Ik — x,efH%) + Z lux — u,efo? @ % imposed by the (perturbed)
S k=0 system
st sky1 = f(sk, uk) @ perturbations might make
h (s, ux) >0, h (sk, ux) > 0 infeasible
S0 = @ limited controllability of h (sk, uk)
at low k

Slack Variables Reformulation

N N—-1
min ZHSk_Xref”%Q"FZHUk_ Urer ||z + WTv
- k=0

@ No effect for h(sk,ux) >0
s.t. Sk = f(Sk, uk)

h(sk,uk)Z—v, VZO
So —

@ Strong penalty for h (s, ux) <0

— choose W large enough
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Handling Infeasibility

Path constraints might become infeasible

N N—1
min Z Ik — x,efH%) + Z lux — u,efo? @ % imposed by the (perturbed)
S k=0 system
st sky1 = f(sk, uk) @ perturbations might make
h (s, ux) >0, h (sk, ux) > 0 infeasible
S0 = @ limited controllability of h (sk, uk)
at low k

Slack Variables Reformulation

N N—-1
min ZHSk_Xref”%Q"FZHUk_ Urer ||z + WTv
- k=0

s.t. Skp1 = f(Sk,uk) ?f '
h(sk,uk)Z—v, VZO
50 =

—NMPC Pl
---Reference| Y

“Time (s)
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RTI lllustration
Consider a simple (discrete-time) problem

N N—1
min > [xd* + 20 [l
k=0 k=0

u,x

s.t. Xxo = )?,',
Xk+1 = 0.9Xk + |: sin ([Ll:)-‘r 3’2] Xk)

lug| <05, k=0,...,N—1,
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Consider a simple (discrete-time) problem

Initialise everything at the reference

4+ O Linear MPC
’¢¢¢ ¢¢$¢ F 5 sqp st
& O Converged SQP||

$. oo, Ve
i ks VOV
15 20

0 5 10

=)

X1

7 o, |
1 ergggasrereess]
5 10 15

20
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Consider a simple (discrete-time) problem

Shift from previous solution, no noise

[_] Solution x;
Guess ,\'f“d’“ from (21
+ Solution x;

O Solution x; |
O Guess x£"™* from (21
+ Solution x;

i1
-5~ Guess u,‘"“‘” from (21),
—+— Solution u;

2 4 6 8 10,... 12 14 16 18 20

26/28



RTI Hlustration

Consider a simple

(discrete-time) problem

Shift from previous solution, process noise

o]

1 Solution x,

1

@ Q g O Guess x,g"d“ from (21
P D@ g + Solution x;
Q@ .
el

2 4 6 8 10 12 14 16 18 20

I Q Solution x; |
Q Guess x;" from (21

+ Solution x;

“OpgmensesseemEms

2 4 6 8 10 12 14 16 20

18

- Solution u;
-5~ Guess uf"™ from (21)
—+— Solution u;

14
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Consider a simple (discrete-time) problem

43
2—3@@

4H
%,
| "®0sss0000000000

RTI vs SQP

¢®@8

@@©

1 Solution x;_;
dss
O Guess xf"™ from (2
+ Single step at time i
Solution x;

900000000

2 4 6 8

10 12 14 16 18 20

[ Solution x;_;

O Guess x£"* from (2
=+ Single slep attime i

(> Solution x;

2 4 8

10 12 14 16 18 20

—&— Solution u;
——Guess u""M lrom 1
——Single step at time i

104, 12
Time

—&— Solution u;

26/28
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Consider a simple (discrete-time) problem

RTI vs linear MPC

[] Linear MPC
00000 3 Comergod
3 ﬁ@eeeeeeeg@@mmammma

2 4 6 8 10 12 11 16 18 20
[ Linear MPC
4 m T T T T T 1+ RTI

<> Converged

¥g
], *onsnppsansasas

2 4 6 8 10 12 14 16 18 20

26/28



RTI Hlustration 2628

Consider a simple (discrete-time) problem

Closed-loop: RTI, linear MPC and SQP, no noise

$ ‘ ‘ ‘ : O Linear MP
[5m] RTI

3| ’$ ] 3 Converged
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Consider a simple (continuous-time) problem

Pendulum on a cart:
~ mlsin(8)8? + mg cos(0) sin(8) + u
N M + m — m(cos(0))? ’

~ mlcos(6) sin(0)62 + u cos(0) + (M + m)gsin(6)
I(M 4+ m — m(cos(6))?) ’

6=

with M =1kg, m=0.1kg, /| =05m, g =9.81 m/s’.

@ Prediction horizon: 2 s
@ Stage cost matrices:

Q =diag([ 10 10 0.1 0.1 ]),
R =0.01
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Consider a simple (continuous-time) problem

Sampling time (s)

——0.025
0.05 =

—02 L
—o04 |5

45 5

4.5 5
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Consider a simple (continuous-time) problem

Prediction horizon (s)

=R —_—2 -
& 1
E L 1 | =——0.8:1
0 1 8 9 |—0510
4
< 0
2 1 1 I
0 1 8 9 10
. 401
T 20
z 0
5 20
40 ! !
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Consider a simple (continuous-time) problem

Integrator accuracy (steps of explicit Euler)

= —20
A 0% 10k
8 0 e 5
1 | | | | | | | | | |=—2
0 0.5 1 15 2 25 3 35 4 45 5
4-
T 2r j”f
< 0
2 I I I I I I I I I ]
0 0.5 1 15 2 25 3 35 4 4.5 5
4o
T 20 —
= 121[0) I I I I I I I I I ]
0 0.5 1 15 2 2.5 3 35 4 4.5 5
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Consider a simple (continuous-time) problem

Shift
1-
= =——RTI with shift
=) S _______/m e —— RT] without shift
S converged NMPC
1 I I I I I I I 1 1 ]
0 0.5 1 15 2 25 3 35 4 4.5 5
4 s s A
ek ‘/—,-.
LA
e —
2 I I I I I I I I I ]
0 0.5 1 15 2 25 3 35 4 45 5
__100F
&
<z
=T e S— e e e e p—
= 100 I I I I I I I I I ]
0 0.5 1 15 2 25 3 35 4 4.5 5
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Consider a simple (continuous-time) problem

Reference trajectory

27/28

—stepatOs
——=stepat1s|=

stepat2s
I I 1 ]
3 35 4.5 5
I I I ]
3 35 4.5 5
I I I ]

3 35

4.5 5
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Thank you for your attention!



