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Linear system

sk+1 = Ask + Buk

Linear feedback uk = −Ksk
sk+1 = (A− BK)sk = AK sk

stable if max
(
|λ(AK )|

)
≤ 1

How to choose K?

What about LQR?

min
s,u

1

2

∞∑
k=0

‖sk‖2
Q + ‖uk‖2

R

s.t. s0 = x̄

sk+1 = Ask + Buk , k ≥ 0

lim
k→∞

sk = 0

Equivalent to solving the DARE
(discrete algebraic Riccati equation)

P = Q + ATPA− ATPBK

K = (R + BTPB)−1BTPA
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Note the equivalence

Horizon: ∞

min
s,u

1

2

∞∑
k=0

‖sk‖2
Q + ‖uk‖2

R

s.t. s0 = x̄

sk+1 = Ask + Buk , k ≥ 0

lim
k→∞

sk = 0

⇔

Horizon: N

min
s,u

1

2

N∑
k=0

‖sk‖2
Q + ‖uk‖2

R +
1

2
‖sN‖2

P

s.t. s0 = x̄

sk+1 = Ask + Buk , k = 0, . . . ,N − 1

with N ≥ 1 and P from the DARE.

The term 1
2
‖sN‖2

P is called cost to go

If we don’t want to solve the DARE

Choose P large enough

Solve the finite horizon problem: Quadratic Program (QP)
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At each sampling instant i , solve the QP

min
u,s

1

2

N−1∑
k=0

‖sk‖2
Q + ‖uk‖2

R +
1

2
‖sN‖2

P

s.t. s0 = x̂i

sk+1 = A sk + B uk

⇔

min
w

1

2
wTFw + f Tw

s.t. Gw + g = 0

Lagrangian Function

L(w , λ) =
1

2
wTFw + f Tw − λT (Gw + g)

First order necessary condition (FONC)

∇L(w , λ) = 0 ⇒
{

Fw + f − GTλ = 0
Gw + g = 0

Solve a linear system: [
F GT

G 0

] [
w
−λ

]
= −

[
f
g

]



Numerical Methods - From Linear Feedback to MPC 5 / 28

At each sampling instant i , solve the QP

min
u,s

1

2

N−1∑
k=0

‖sk‖2
Q + ‖uk‖2

R +
1

2
‖sN‖2

P

s.t. s0 = x̂i

sk+1 = A sk + B uk

⇔

min
w

1

2
wTFw + f Tw

s.t. Gw + g = 0

Lagrangian Function

L(w , λ) =
1

2
wTFw + f Tw − λT (Gw + g)

First order necessary condition (FONC)

∇L(w , λ) = 0 ⇒
{

Fw + f − GTλ = 0
Gw + g = 0

Solve a linear system: [
F GT

G 0

] [
w
−λ

]
= −

[
f
g

]



Numerical Methods - From Linear Feedback to MPC 5 / 28

At each sampling instant i , solve the QP

min
u,s

1

2

N−1∑
k=0

‖sk‖2
Q + ‖uk‖2

R +
1

2
‖sN‖2

P

s.t. s0 = x̂i

sk+1 = A sk + B uk

⇔

min
w

1

2
wTFw + f Tw

s.t. Gw + g = 0

Lagrangian Function

L(w , λ) =
1

2
wTFw + f Tw − λT (Gw + g)

First order necessary condition (FONC)

∇L(w , λ) = 0 ⇒
{

Fw + f − GTλ = 0
Gw + g = 0

Solve a linear system: [
F GT

G 0

] [
w
−λ

]
= −

[
f
g

]



Numerical Methods - From Linear Feedback to MPC 5 / 28

At each sampling instant i , solve the QP

min
u,s

1

2

N−1∑
k=0

‖sk‖2
Q + ‖uk‖2

R +
1

2
‖sN‖2

P

s.t. s0 = x̂i

sk+1 = A sk + B uk

⇔

min
w

1

2
wTFw + f Tw

s.t. Gw + g = 0

Lagrangian Function

L(w , λ) =
1

2
wTFw + f Tw − λT (Gw + g)

First order necessary condition (FONC)

∇L(w , λ) = 0 ⇒
{

Fw + f − GTλ = 0
Gw + g = 0

Solve a linear system: [
F GT

G 0

] [
w
−λ

]
= −

[
f
g

]



Numerical Methods - From Linear Feedback to MPC 5 / 28

At each sampling instant i , solve the QP

min
u,s

1

2

N−1∑
k=0

‖sk‖2
Q + ‖uk‖2

R +
1

2
‖sN‖2

P

s.t. s0 = x̂i

sk+1 = A sk + B uk

⇔

min
w

1

2
wTFw + f Tw

s.t. Gw + g = 0

Lagrangian Function

L(w , λ) =
1

2
wTFw + f Tw − λT (Gw + g)

First order necessary condition (FONC)

∇L(w , λ) = 0 ⇒
{

Fw + f − GTλ = 0
Gw + g = 0

Solve a linear system: [
F GT

G 0

] [
w
−λ

]
= −

[
f
g

]



Numerical Methods - From Linear Feedback to MPC 6 / 28

Treating Constrained Systems

min
u,s

1

2

N−1∑
k=0

‖sk‖2
Q + ‖uk‖2

R +
1

2
‖sN‖2

P

s.t. s0 = x̂i

sk+1 = A sk + B uk

C sk + D uk + c ≥ 0

LQR: unconstrained

MPC: state and input constraints

‖sN‖2
P only approximates the cost

to go

Handle explicitly:

Actuator limitations, e.g. saturation of an input signal

State constraints, e.g. concentration of a reactant

Mixed state-input constraints

MPC yields a nonlinear control law!
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2
wTFw + f Tw

s.t. Gw + g = 0

Hw + h ≥ 0

Lagrangian Function

L(w , λ, µ) =
1

2
wTFw + f Tw − λT (Gw + g)− µT (Hw + h)

First order necessary condition (FONC): the KKT conditions

∇L(w , λ, µ) = 0 ⇒


Fw + f − GTλ− HTµ = 0
Gw + g = 0
Hw + h ≥ 0
µ ≥ 0
µi (Hw + h)i = 0
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Solving the KKT conditions

Fw + f − GTλ− HTµ = 0
Gw + g = 0
Hw + h ≥ 0
µ ≥ 0
µi (Hw + h)i = 0

The Active Set method
Let A be the set of active constraints

Fw + f − GTλ− HTµ = 0
Gw + g = 0
HAw + hA = 0
µĀ = 0

Guess A
Solve the AS-KKT system

Update A

The Interior Point method

Fw + f − GTλ− HTµ = 0
Gw + g = 0
Hw + h + s = 0
µi si = τ
µ ≥ 0
s ≥ 0

Choose τ “big”

Solve the IP-KKT system

Perform linesearch

update τ
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QP solvers for MPC

Convex QP:

No inequalities: solve a linear system

Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:

Active-set

Interior-point

First-order methods (difficult to use for nonconvex problems)

Many reliable QP solvers available:

qpOASES, qpDUNES

FORCES, HPMPC / HPIPM

ODYSQP

many others

Condensing

Eliminate states (cost N2)

Solve dense QP

Sparse linear algebra

Exploit the qp structure



Numerical Methods - From Linear Feedback to MPC 9 / 28

QP solvers for MPC

Convex QP:

No inequalities: solve a linear system

Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:

Active-set

Interior-point

First-order methods (difficult to use for nonconvex problems)

Many reliable QP solvers available:

qpOASES, qpDUNES

FORCES, HPMPC / HPIPM

ODYSQP

many others

Condensing

Eliminate states (cost N2)

Solve dense QP

Sparse linear algebra

Exploit the qp structure



Numerical Methods - From Linear Feedback to MPC 9 / 28

QP solvers for MPC

Convex QP:

No inequalities: solve a linear system

Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:

Active-set

Interior-point

First-order methods (difficult to use for nonconvex problems)

Many reliable QP solvers available:

qpOASES, qpDUNES

FORCES, HPMPC / HPIPM

ODYSQP

many others

Condensing

Eliminate states (cost N2)

Solve dense QP

Sparse linear algebra

Exploit the qp structure



Numerical Methods - From Linear Feedback to MPC 9 / 28

QP solvers for MPC

Convex QP:

No inequalities: solve a linear system

Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:

Active-set

Interior-point

First-order methods (difficult to use for nonconvex problems)

Many reliable QP solvers available:

qpOASES, qpDUNES

FORCES, HPMPC / HPIPM

ODYSQP

many others

Condensing

Eliminate states (cost N2)

Solve dense QP

Sparse linear algebra

Exploit the qp structure



Numerical Methods - From Linear Feedback to MPC 9 / 28

QP solvers for MPC

Convex QP:

No inequalities: solve a linear system

Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:

Active-set

Interior-point

First-order methods (difficult to use for nonconvex problems)

Many reliable QP solvers available:

qpOASES, qpDUNES

FORCES, HPMPC / HPIPM

ODYSQP

many others

Condensing

Eliminate states (cost N2)

Solve dense QP

Sparse linear algebra

Exploit the qp structure



Numerical Methods - From Linear Feedback to MPC 9 / 28

QP solvers for MPC

Convex QP:

No inequalities: solve a linear system

Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:

Active-set

Interior-point

First-order methods (difficult to use for nonconvex problems)

Many reliable QP solvers available:

qpOASES, qpDUNES

FORCES, HPMPC / HPIPM

ODYSQP

many others

Condensing

Eliminate states (cost N2)

Solve dense QP

Sparse linear algebra

Exploit the qp structure



Numerical Methods - From Linear Feedback to MPC 9 / 28

QP solvers for MPC

Convex QP:

No inequalities: solve a linear system

Inequalities: interior point or active set method

Nonconvex QP: NP-hard problem

Classes of QP solvers:

Active-set

Interior-point

First-order methods (difficult to use for nonconvex problems)

Many reliable QP solvers available:

qpOASES, qpDUNES

FORCES, HPMPC / HPIPM

ODYSQP

many others

Condensing

Eliminate states (cost N2)

Solve dense QP

Sparse linear algebra

Exploit the qp structure



Numerical Methods - From MPC to NMPC 10 / 28

Linear system?

Linear MPC at time i

min
u,s

N∑
k=0

‖sk − xref ‖2
Q +

N−1∑
k=0

‖uk − uref ‖2
R

s.t. sk+1 = A sk + B uk

C sk + D uk ≥ 0,

s0 = x̂i

1 Linear dynamics

2 Linear path constraints

3 Solve a QP at each iteration

4 Extremely fast for small to
medium scale problems

Nonlinear system?

Linearize at xref , uref , use
linear MPC

or...

Nonlinear MPC at time i

min
u,s

N∑
k=0

‖sk − xref ‖2
Q +

N−1∑
k=0

‖uk − uref ‖2
R

s.t. sk+1 = f (sk , uk )

h (sk , uk ) ≥ 0,

s0 = x̂i

Problem is non-convex,
use NLP solver
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k=0

‖uk − uref ‖2
R

s.t. sk+1 = f (sk , uk )

h (sk , uk ) ≥ 0,

s0 = x̂i

Problem is non-convex,
use NLP solver
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SQP for NMPC in a nutshell

Quadratic Problem Approximation

NMPC at time i

min
u,s

N∑
k=0

‖sk − xref ‖2
Q +

N−1∑
k=0

‖uk − uref ‖2
R

s.t. sk+1 = f (sk , uk)

h (sk , uk) ≥ 0,

s0 = x̂i

QP (for a given s, u)

min
∆u,∆s

1

2

[
∆s ∆u

] [
∆s
∆u

]
+

JT

[
∆s
∆u

]

s.t. ∆sk+1 =

f

+

∂f

∂s

∆sk +

∂f

∂u

∆uk ,

h

+

∂h

∂s

∆sk +

∂h

∂u

∆uk ≥ 0,

s0 = x̂i

Iterative procedure (at each time i):

1 Given current guess s, u

2 Linearize at s, u: need 2nd order derivatives for B

3 Make sure Hessian B � 0: avoid negative curvature

4 Solve QP

5 Globalization (e.g. line-search): ensure descent, stepsize α ∈ (0, 1]

6 Update

[
s+

u+

]
=

[
s
u

]
+ α

[
∆s
∆u

]
and iterate
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Linear system

Nonlinear system

Continuous time:

ẋ(t) = Acx(t) + Bcu(t)

ẋ(t) = fc (x(t), u(t))

Discrete time:

sk+1 = A sk + B uk

sk+1 = f (sk , uk)

Discretization over a time interval t ∈ [tk , tk+1], input u(t) = uk

A= eAc(tk+1−tk),

B =

∫ tk+1

tk

eAcτBcdτ

Integration of function fc can be
complex, possibly iterative implicit

(algorithm) !!
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Integration (with sensitivities)

Consider ẋ = fc(x , u)

Discretize with explicit Euler:

x1 = hfc(x0, u) + x0, A1 =
dx1

dx0
, B1 =

dx1

du

x2 = hfc(x1, u) + x1, A2 =
dx2

dx0
, B2 =

dx2

du

Sensitivities wrt states:

A1 =
∂x1

∂x0
= (I + h∇x fc(x0, u))

A2 =
∂x2

∂x1

∂x1

∂x0
= (I + h∇x fc(x1, u))A1

For the controls it’s a bit trickier:

B1 =
∂x1

∂u
= h∇ufc(x0, u)

B2 =
∂x2

∂u
+
∂x2

∂x1

∂x1

∂u
= h∇ufc(x1, u) + (I + h∇fc(x1, u))B1
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Consider ẋ = fc(x , u)

Discretize with explicit Euler:

x1 = hfc(x0, u) + x0, A1 =
dx1

dx0
, B1 =

dx1

du

x2 = hfc(x1, u) + x1, A2 =
dx2

dx0
, B2 =

dx2

du

Sensitivities wrt states:

A1 =
∂x1

∂x0
= (I + h∇x fc(x0, u))

A2 =
∂x2

∂x1

∂x1

∂x0
= (I + h∇x fc(x1, u))A1

For the controls it’s a bit trickier:

B1 =
∂x1

∂u
= h∇ufc(x0, u)

B2 =
∂x2

∂u
+
∂x2

∂x1

∂x1

∂u
= h∇ufc(x1, u) + (I + h∇fc(x1, u))B1



Numerical Methods - From Continuous Time to Discrete Time 13 / 28

Integration (with sensitivities)
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Integration (with sensitivities)

There are many numerical schemes:

Explicit Euler is usually not the most efficient method! Inaccuracy: O(h)

Explicit Runge-Kutta of order 4 is rather successful. Inaccuracy: O(h4)

k1 = fc(x , u) k2 = fc

(
x +

h

2
k1, u

)
k3 = fc

(
x +

h

2
k2, u

)
k4 = fc(x + hk3, u)

x+ = x +
h

6
(k1 + 2k2 + 2k3 + k4)

Implicit schemes have desirable properties (stiff systems)

Simplest example (implicit Euler): x+ = x + hfc(x+, u)

Collocation = Implicit Runge-Kutta

Exponential integrators, e.g.

x+ = Ax + Bu, A = eh∇x fc(x,u), B =

∫ h

0

eτ∇x fc(x,u)∇ufc(x , u)dτ
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Implicit schemes have desirable properties (stiff systems)

Simplest example (implicit Euler): x+ = x + hfc(x+, u)

Collocation = Implicit Runge-Kutta

Exponential integrators, e.g.

x+ = Ax + Bu, A = eh∇x fc(x,u), B =
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How to Discretize the System?

Single Shooting:
From x(t0) integrate the system on the whole horizon

→ continuous trajectory

Multiple Shooting:
From x(tk) integrate the system on each interval separately

→ discontinuous trajectory
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Single Shooting
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s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)
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Single Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)


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Single Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)


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Single Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)



θ

M

m

l

u

z

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-25

-20

-15

-10

-5

0

5

10

15

20

25
SQP iter: 50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6

-4

-2

0

2

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4

-2

0

2

4

6

8



Numerical Methods - From Continuous Time to Discrete Time 15 / 28

Single Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)


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Single Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)


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Single Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)


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Single Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)


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Multiple Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)



θ

M

m

l

u

z

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-25

-20

-15

-10

-5

0

5

10

15

20

25
SQP iter: 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6

-4

-2

0

2

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-4

-2

0

2

4

6

8



Numerical Methods - From Continuous Time to Discrete Time 16 / 28

Multiple Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)


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Multiple Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)
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Multiple Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)
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Multiple Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)
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Multiple Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
=

 ml sin(θ)ω2+mg cos(θ) sin(θ)+u

M+m−m(cos(θ))2

− (ml cos(θ) sin(θ)ω2+(M+m)g sin(θ)+u cos(θ))

L(M+m−m(cos(θ))2)
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Multiple Shooting

min
u(·)

∫ 2

t0

u(t)2 dt

s.t. x(0) =
[

0 0 0 0
]>

x(2) =
[

0 π 0 0
]>

ẋ(t) = F (x(t), u(t)), t ∈ [0, 2]

−20 ≤ u(t) ≤ 20, t ∈ [0, 2]

[
z̈

θ̈

]
=

[
v̇

ω̇

]
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Multiple Shooting vs Single Shooting

Better: unstable systems

Better: initialization of states at intermediate nodes

Warning: leads to bigger QP/NLP

S. Shooting: nx + (N − 1)nu opt. vars (x0, u0, u1, . . . , uN−1)
M. Shooting: Nnx + (N − 1)nu opt. vars (x0, u0, x1, u1, . . . , xN)

Good news!: after integration, all xk , k = 1, . . . ,N can be eliminated

→ Condensing: reduce to the size of Single Shooting (using the
dynamic constraints)

→ Efficient Sparse Linear Algebra can be very effective, especially for
long horizons

Continuity conditions:

S. Shooting: imposed by the integration
M. Shooting: imposed by the QP/NLP
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Let’s get a closer look at SQP

QP (for a given s, u)

min
∆u,∆s

1

2

[
∆s ∆u

] [ ∆s
∆u

]
+ JT

[
∆s
∆u

]

s.t. ∆sk+1 = f +
∂f

∂s
∆sk +

∂f

∂u
∆uk ,

h +
∂h

∂s
∆sk +

∂h

∂u
∆uk ≥ 0,

s0 = x̂i
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[
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]
+ JT
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∆sk +

∂f

∂u
∆uk ,

h +
∂h

∂s
∆sk +

∂h

∂u
∆uk ≥ 0,

s0 = x̂i

Linearize

f : evaluate integrator
∂f
∂s
, ∂f
∂u

: differentiate integrator

h: evaluate nonlinear function
∂h
∂s
, ∂h
∂u

: differentiate nonlinear function

B = diag(Q, . . . ,Q,R . . . ,R) +
〈
λ, ∂

2f
∂w2

〉
+
〈
µ, ∂

2h
∂w2

〉
, w =

[
s
u

]
J = 2wTdiag(Q, . . . ,Q,R . . . ,R)
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Ensure B � 0

Exact Hessian: add curvature to the negative directions
Quadratic convergence

BFGS update: Bk+1 = Bk + Bkσσ
TBk

σTBkσ
+ γγT

σTγ

Superlinear convergence

Gauss-Newton approximation: B ≈ JTJ (for linear MPC it is exact!)
Linear convergence
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Let’s get a closer look at SQP

QP (for a given s, u)

min
∆u,∆s

1

2

[
∆s ∆u

]
B

[
∆s
∆u

]
+ JT

[
∆s
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]

s.t. ∆sk+1 = f +
∂f

∂s
∆sk +
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∂u
∆uk ,

h +
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∆sk +

∂h
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∆uk ≥ 0,
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Iterate to convergence

All previous steps are repeated until convergence!

Computations can become very long

Cannot apply the control instantaneously
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Can we exploit the MPC structure to be faster?

What about:

1 Newton step

Initial value embedding:
s0 = x̂i as a constraint

No globalization

Gauss-Newton Hessian
approximation

→ no need to iterate

→ faster convergence, clever
computations

→ need to enforce s0 = x̂i

→ only 1st order derivatives,
Hessian B � 0

Result:

Converge while the system evolves
next SQP iteration takes place on the new problem x̂i+1

Need to have a good initial guess
better to shift (to be continued...)

We are essentially doing path-following
with a generalized tangential predictor

Under some (mild) conditions, the SQP solution is closely tracked
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Standard SQP

Real Time Iterations

NMPC at time i

min
u,s

N∑
k=0

‖sk − xref ‖2
Q +

N−1∑
k=0

‖uk − uref ‖2
R

s.t. sk+1 = f (sk , uk)

h (sk , uk) ≥ 0,

s0 = x̂i

RTI at time i

min
∆u,∆s

1

2

[
∆s ∆u

]

JT J

[
∆s
∆u

]
+ JT

[
∆s
∆u

]

s.t. ∆sk+1 = f +
∂f

∂s
∆sk +

∂f

∂u
∆uk

h +
∂h

∂s
∆sk +

∂h

∂u
∆uk ≥ 0,

s0 = x̂i

Iterative procedure (at each time i):

1 Given current guess s, u

2 Linearize at s, u

3 Make sure Hessian B � 0

4 Solve QP

5 Globalization (e.g. line-search)

6 Update and iterate

Preparation Phase
Without knowing x̂i

Linearize

(Gauss-Newton ⇒ B � 0)

Prepare the QP

Feedback Phase:

Solve QP once x̂i available
→ same latency as linear MPC
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4 Solve QP

5 Globalization (e.g. line-search)

6 Update and iterate

Preparation Phase
Without knowing x̂i

Linearize

(Gauss-Newton ⇒ B � 0)

Prepare the QP

Feedback Phase:

Solve QP once x̂i available
→ same latency as linear MPC
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Linear MPC at time i

min
u,s

N∑
k=0

‖sk − xref ‖2
Q + ‖uk − uref ‖2

R

s.t. sk+1 = Aksk + Bkuk

Cksk + Dkuk ≥ 0,

s0 = x̂i

RTI at time i

min
u,s

N∑
k=0

‖sk − xref ‖2
Q + ‖uk − uref ‖2

R

s.t. sk+1 = f (sk , uk)

h (sk , uk) ≥ 0,

s0 = x̂i

At each time i :

1 Solve the QP

2 Wait

At each time i :

1 Solve the QP

2 Compute the new linearization
of the constraints

3 Prepare the new QP

RTI differs from linear MPC in the sense that the constraints
are re-linearized at each time instant on the current

trajectory rather than only once on the reference trajectory
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Embedded Solver

RTI at time i

min
u,s

N∑
k=0

‖sk − xref ‖2
Q + ‖uk − uref ‖2

R

s.t. sk+1 = f (sk , uk)

h (sk , uk) ≥ 0,

s0 = x̂i

Properties:

Fixed problem dimensions

Specific structure

Tailored C code

Exploit the structure and
minimize number of operations

No dynamic memory allocation

Minimize branching in the
exported code

Optimized linear algebra routines

Tailored fixed-step RK integrators

ACADO / ACADOS

Multiple shooting

Real time iterations
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Importance of the Initial Guess

RTI (single Newton step): 1st order correction
→ ‖[s, u]− [s∗, u∗]‖ = o(e2

guess)

Guess: shift the solution at the previous step

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

1
a b

e

x

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

1

u

T

c d

f

Guess error eguess small if...

1 {ui−1, s i−1} close to {ui−1∗ , s i−1∗}
2 s i0 close to x̂ i

Key for algorithmic reliability

1 Sample fast enough

2 Warm start
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Tuning: Trial-and-error, experience-based

Positive-definite cost

not necessary, but recommended
helps convergence

For pure setpoint tracking
1 use a scaled identity Wi,i = σ−2

i , where σi = range of state i
2 simulate and adjust the weights as Wi,i = ωiσ

−2
i

3 iterate until performance is satisfactory

If you have a local linear controller you wish to imitate

controller matching for feedback K [Zanon,Bemporad, w.i.p.]

min
α,β,W ,P

γβ − α

s.t. P = Q + A>PA− (S> + A>PB)K

(R + A>PB)K = S + B>PA

βI �W � αI

where W =

 Q S>

S R



If there is a clear “economic” objective

automatic tuning [Zanon, Gros, Diehl, JPC2016]
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Handling Infeasibility

Path constraints might become infeasible

min
u,s

N∑
k=0

‖sk − xref ‖2
Q +

N−1∑
k=0

‖uk − uref ‖2
R

s.t. sk+1 = f (sk , uk)

h (sk , uk) ≥ 0,

s0 = x̂i

x̂i imposed by the (perturbed)
system

perturbations might make
h (sk , uk) ≥ 0 infeasible

limited controllability of h (sk , uk)
at low k

Slack Variables Reformulation

min
u,s

N∑
k=0

‖sk − xref ‖2
Q +

N−1∑
k=0

‖uk − uref ‖2
R + W T v

s.t. sk+1 = f (sk , uk)

h (sk , uk) ≥ −v , v ≥ 0

s0 = x̂i
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→ choose W large enough
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Consider a simple (discrete-time) problem

min
u,x

N∑
k=0

‖xk‖2 + 20
N−1∑
k=0

‖uk‖2

s.t. x0 = x̂i ,

xk+1 = 0.9xk +

[
sin
([

0 1
]
xk
)

uk + u3
k

]
,

|uk | < 0.5, k = 0, . . . ,N − 1,



RTI Illustration 26 / 28

Consider a simple (discrete-time) problem

Initialise everything at the reference

November 10, 2015 International Journal of Control RTI˙LTV˙Seb˙3
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Figure 1. Comparison between the open-loop predicted trajectories obtained via linear MPC (circles), via performing a single iteration of Al-
gorithm 1 using a full step (α = 1) and using x = xref, u = uref as an initial guess (crosses), and via running Algorithm 1 to full convergence
(squares).

linearisation (7) used in QPMPC in (1). Additionally, Jk evaluated at x = xref,u = uref is zero. It immediately
follows that the solution of QPMPC given by (1) is identical to the solution of QPNMPC given by (13).

If the SQP Algorithm 1 is fed with the reference trajectory as an initial guess, i.e. is run as:

xi, ui = SQP
(

x̂i, xref
i , uref

i ,xref
i , uref

i

)
(17)

then the first Newton direction (∆x, ∆u) computed in Algorithm 1, line 2 is identical to the solution of the
linear MPC problem computed via (3). This observation is illustrated in Figure 1 for the simple problem:

min
u,x

N

∑
k=0
∥xk∥2 +20

N−1

∑
k=0
∥uk∥2 (18a)

s.t. x0 = x̂i, (18b)

xk+1 = 0.9xk +

[
sin

([
0 1

]
xk

)

uk +u3
k

]
, (18c)

|uk| < 0.5, k = 0, . . . ,N−1, (18d)

with state xk ∈ R2, input uk ∈ R, and N = 19. The optimal trajectories obtained via linear MPC (1) are
reported using circles (◦). The trajectories obtained from performing a single iteration of Algorithm 1,
using a full step (α = 1) and x = xref, u = uref as the initial guess are displayed using plus signs (+). The
trajectories resulting from running Algorithm 1 to full convergence are displayed using squares (!).

3.2 Warm-started SQP for NMPC

Algorithm 1 requires the initial guess xguess, uguess as an input. Selecting an adequate initial guess is crucial
for obtaining a fast and reliable convergence of the SQP iterations. First, a good initial guess allows for

6
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Consider a simple (discrete-time) problem

Shift from previous solution, no noise
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(a) In the absence of disturbance and model error, the guess ob-
tained via shifting the previous solution is typically an excellent ap-
proximation of the current solution. In this graph, the guess for time
i and the corresponding solution are indistinguishable.
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shifting needs a correction.

Figure 2. Illustration of the shifting procedure.

These observations provide an important intuitive justification of the Real-Time Iteration approach, de-
scribed in Section 4. Before presenting it in detail, we first review the real-time dilemma.

3.3 The real-time dilemma

Upon obtaining a new state estimation x̂i, the SQP procedure can be started. The real-time dilemma stems
from the fact that while the SQP iterations are performed, the physical system evolves, and the information
used to compute the state estimation x̂i becomes outdated.

Clearly, this problem can be partially addressed by using a prediction of what the state of the system will
be at the time the SQP algorithm will be completed, as opposed to directly using the current state estima-
tion. However, even when using such a prediction approach, since updating the control policy requires the
completion of the SQP algorithm, the SQP procedure introduces a potentially large delay between gathering
measurements from the physical system and delivering the corresponding required control action.

It follows that even if the SQP computational time is accounted for via a state prediction, the SQP
algorithm is nonetheless based on outdated system information. We illustrate this key issue in Fig. 3(a).

The key idea of the RTI procedure detailed in Section 4, and first presented in [12] is to consistently
incorporate the latest information on the system evolution in the iterations computing the NMPC solutions.

The real-time dilemma then consists in choosing between applying an exact solution computed using
outdated information versus applying an approximate solution computed using the most up-to-date infor-
mation.
Summary of the section

• When SQP is deployed on NMPC, and the reference trajectory is used as an initial guess, the first
step of a full step Gauss-Newton SQP delivers the same control solution as linear MPC (Lemma 1).

• In the context of NMPC, the SQP iteration can be efficiently warm-started by shifting the solution
obtained at the previous time instant (Sec. 3.2). In the presence of reasonably small disturbances, the
SQP algorithm then needs only a couple of full Newton steps to reach full convergence.

• When running SQP to full convergence, only the first iteration is using up-to-date estimation of the
system state x̂i. Subsequent iterations are still performed based on x̂i, while the system state evolves,
making x̂i outdated (Sec. 3.3).

8
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Consider a simple (discrete-time) problem

Shift from previous solution, process noise
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These observations provide an important intuitive justification of the Real-Time Iteration approach, de-
scribed in Section 4. Before presenting it in detail, we first review the real-time dilemma.

3.3 The real-time dilemma

Upon obtaining a new state estimation x̂i, the SQP procedure can be started. The real-time dilemma stems
from the fact that while the SQP iterations are performed, the physical system evolves, and the information
used to compute the state estimation x̂i becomes outdated.

Clearly, this problem can be partially addressed by using a prediction of what the state of the system will
be at the time the SQP algorithm will be completed, as opposed to directly using the current state estima-
tion. However, even when using such a prediction approach, since updating the control policy requires the
completion of the SQP algorithm, the SQP procedure introduces a potentially large delay between gathering
measurements from the physical system and delivering the corresponding required control action.

It follows that even if the SQP computational time is accounted for via a state prediction, the SQP
algorithm is nonetheless based on outdated system information. We illustrate this key issue in Fig. 3(a).

The key idea of the RTI procedure detailed in Section 4, and first presented in [12] is to consistently
incorporate the latest information on the system evolution in the iterations computing the NMPC solutions.

The real-time dilemma then consists in choosing between applying an exact solution computed using
outdated information versus applying an approximate solution computed using the most up-to-date infor-
mation.
Summary of the section

• When SQP is deployed on NMPC, and the reference trajectory is used as an initial guess, the first
step of a full step Gauss-Newton SQP delivers the same control solution as linear MPC (Lemma 1).

• In the context of NMPC, the SQP iteration can be efficiently warm-started by shifting the solution
obtained at the previous time instant (Sec. 3.2). In the presence of reasonably small disturbances, the
SQP algorithm then needs only a couple of full Newton steps to reach full convergence.

• When running SQP to full convergence, only the first iteration is using up-to-date estimation of the
system state x̂i. Subsequent iterations are still performed based on x̂i, while the system state evolves,
making x̂i outdated (Sec. 3.3).
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Consider a simple (discrete-time) problem

RTI vs SQP
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Figure 4. Illustration of the single full Newton step approach with state noise.

Figure 4, where a single full Newton step strategy is compared to a fully converged SQP method.
Algorithm 2 computes the RTI feedback control policy. However, as we will present in the next sec-

tion, the genuine RTI algorithm divides the computations in two phases so as to achieve shorter feedback
latencies.

4.2 The RTI algorithm: preparation-feedback split

The RTI algorithm is an improved version of Algorithm 2, where its feedback time is reduced. The im-
provement is using the fact that steps 1 and 2 of Algorithm 2 do not require the knowledge of the state
estimation x̂i, and can therefore be performed before the state estimation x̂i becomes available.

The RTI scheme (see Algorithm 3) thus proposes to split the operation between:

• a preparation phase, performing the computations involved in the steps 1 and 2 of Algorithm 2 prior
to obtaining the new state estimation x̂i.

• a feedback phase, performing the computations involved in steps 3 and 4 upon obtaining the latest
state estimation x̂i.

Note that usually the Gauss-Newton Hessian approximation [3], i.e. Hk = Wk , is used because (a) it does
not require the computation of second order derivatives and (b) it always delivers a positive (semi)definite
Hessian approximation. For a detailed overview on the RTI scheme, including a proof of nominal stability,
we refer to [9, 10, 13].

It is important to remark that:

• The delay introduced by the feedback time can be accommodated as in linear MPC, by including a
corresponding prediction in the state estimation.

• The overall sampling time ti− ti−1 that can be achieved by the RTI scheme is limited by the total time
spent in solving both the feedback phase and the preparation phase.

• The time required to perform the feedback phase is practically the same as the time required to solve
the linear MPC problem.

• The sampling time that can be achieved via RTI-based NMPC increases from standard linear MPC
by the time required for the preparation phase.

• It is typically desirable that the feedback time is only a fraction of the overall sampling time. Because

10
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Consider a simple (discrete-time) problem

RTI vs linear MPC
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Figure 5. Illustration of the RTI solution vs. the linear MPC solutions at the discrete time instant i = 2, with state disturbances.
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(b) State disturbances of covariance 0.1.

Figure 6. Illustration of the RTI solution vs. the linear MPC solutions in closed-loop simulations, with and without state disturbances.

Equation (ODE) of the form:

ẋ(t) = F (x(t),u(t)) . (23)

In this section, we will present a family of numerical methods for simulation and sensitivity generation.
It is important to stress that the well-known matrix exponential can also be considered as such a method

13



RTI Illustration 26 / 28

Consider a simple (discrete-time) problem

Closed-loop: RTI, linear MPC and SQP, no noise
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Equation (ODE) of the form:

ẋ(t) = F (x(t),u(t)) . (23)

In this section, we will present a family of numerical methods for simulation and sensitivity generation.
It is important to stress that the well-known matrix exponential can also be considered as such a method
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Consider a simple (continuous-time) problem

Pendulum on a cart:

ẅ =
ml sin(θ)θ̇2 + mg cos(θ) sin(θ) + u

M + m −m(cos(θ))2
,

θ̈ = −ml cos(θ) sin(θ)θ̇2 + u cos(θ) + (M + m)g sin(θ)

l(M + m −m(cos(θ))2)
,

with M = 1 kg, m = 0.1 kg, l = 0.5 m, g = 9.81 m/s2.

θ

M

m

l

F

w

y

Prediction horizon: 2 s

Stage cost matrices:

Q = diag(
[

10 10 0.1 0.1
]
),

R = 0.01



RTI Illustration 27 / 28

Consider a simple (continuous-time) problem

Sampling time (s)
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Consider a simple (continuous-time) problem

Prediction horizon (s)
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Consider a simple (continuous-time) problem

Integrator accuracy (steps of explicit Euler)
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Consider a simple (continuous-time) problem

Shift
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Consider a simple (continuous-time) problem

Reference trajectory
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Thank you for your attention!


