

Enel Research Intelligent use of electricity

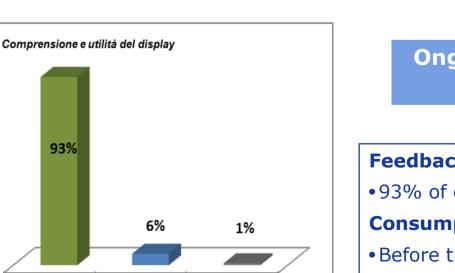
Gianluca Gigliucci

Eprice workshop, Pisa, January 28th 2013

Active End-Users and Energy Efficiency

Customer (self)awareness

ComeConsumo Trial (ENEL ENERGIA): Provision of value added services tailored for Residential and Small Business customers


Real Time monitoring: How much customers consume

Store and Show Data: When and How they consume

Provision of services: Load management

Bassa

93%

Elevata

Media

Ongoing trial on 1200 customers

Feedback on smart technologies at home:

•93% of customers satisfied by the interface and information

Consumption awareness on own consumptions:

- Before trial: 2%
- After trial: 57%

Active End-Users and Energy Efficiency DomusLab

DomusLab: assessment and modelling of technologies that may enable more intelligent electricity uses

Emulation of different environments

- Residential customer level (active)
- Retailer level (future development)

Interoperability of devices

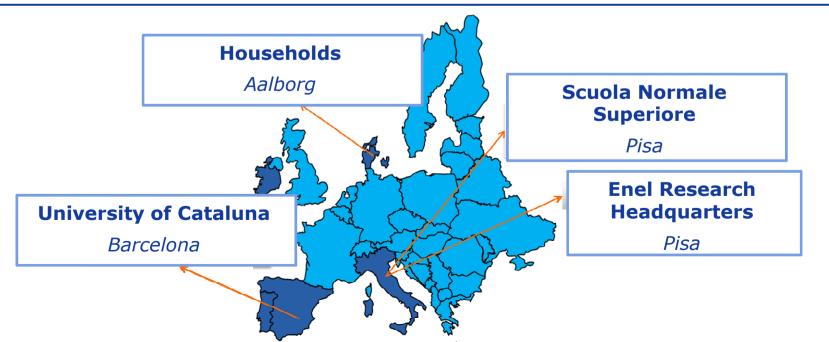
Test of effective integration of different technologies

Residential environment simulator

- Multiagent modeling of a home automation system (e.g. storage@home)
- Hardware in the loop validations

Assessment of appliance "signature"

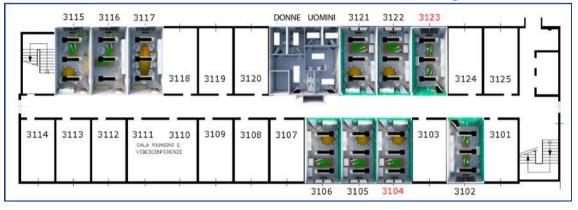
Measurements of signatures & Validation of Non Invasive Load Monitoring algorithms



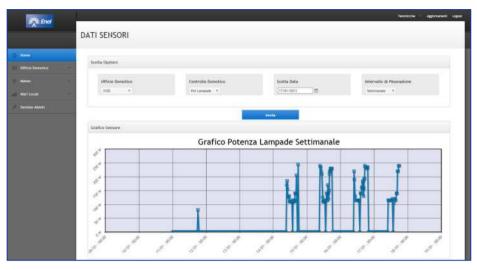
Active End-Users and Energy Efficiency Smart Buildings

Identification of the **best energy efficiency solution** for **different buildings**: residential, offices, laboratories. Savings are achieved by means of:

- RES deployment and building integration
- ✓ Use of storage systems (thermal and electrical) to optimize consumption/production of energy,
- increase revenues and reliability
- Building automation systems for optimal management of local loads


Demo Sites

Active End-Users and Energy Efficiency


Smart buildings - Pisa demo

Domotic offices @Pisa E&R HQ

Centralised & Distributed appliance control
Comparison of "domotised" vs. standard offices

Active End-Users and Energy Efficiency

Active buildings – Catania demo

Enel solar lab building

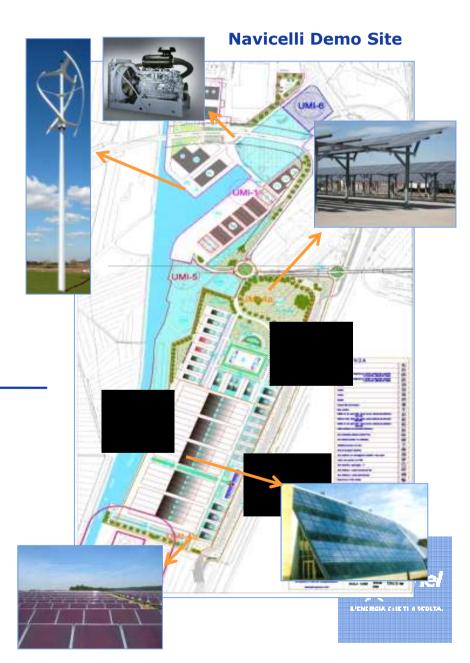
- Designed ('80) to demonstrate building efficiency
- Facades may be replaced to test effects on internal environment

<image><image>

Refurbish the external structure to use the building as a living lab to test:

- Building integrated renewables (structural materials, active paintings, etc.)
- High efficiency appliances to enhance electricity/ use instead of gas
- Domotics

Autonomous Grids and Districts


Two field tests: Navicelli and Pontlab

Development of management algorithms for district optimisation

- Optimisation of energy exchange with the distribution network
- Maximisation of revenues for the district owner
- Provision of added value services to the Distribution System Operator (DSO): power/frequency, voltage control, active demand

Local resources available:

- Renewable generation
- Industrial Loads
- Cogeneration
- Storage (thermal, electric)

Autonomous Grids and Districts

Output: operational set-points for every Distributed Energy Resource (DER) each 15' for the following 24 hours

INPUT

- Electricity purchase/selling prices
- Gas purchase prices
- Value of incentives
- Load curtailment cost
- Operation cost
- Load/Generation forecast
- Load request
- Real time measurement
- Meteorological real-time data
- Weather forecast
- Request of service from DSO/Market

CONSTRAINTS

- Network capability
- DERs capability
- DERs efficiency

Energy Management System Optimisation Algorithm

Optimization of operation

Maximization of profits

OUTPUT: 96 distpatch orders

Dispatch of generating units
 Set point of P, Q for generators
 Set point of heat power

Demand Side Management

Percentage of electric load curtailment
Percentage of thermal load curtailment

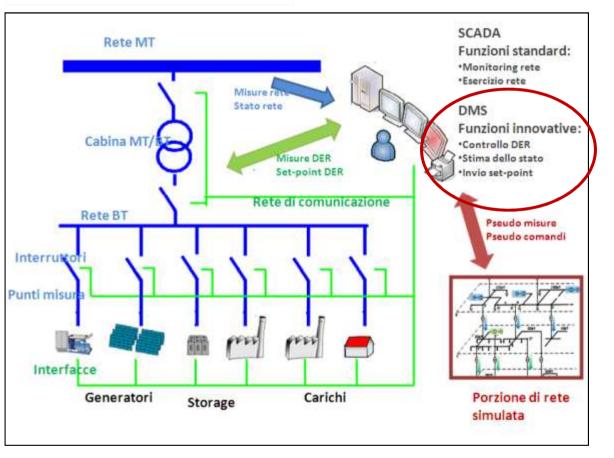
Energy storage systems

-Charge/discharge of electric storage

-Charge/discharge of thermal storage


Autonomous Grids and Districts

Development of advanced Distribution network Management System


Development and validation of advanced DMS with the following functionalities:

- Optimised integration of Distributed Energy Resources (DER)
- Use of DER to provide added value services to the main distribution/transmission network
- Network state estimation
- Network reconfiguration for minimisation of losses

Livorno Experimental Area

Livorno Test site architecture

Test to begin by June 2013

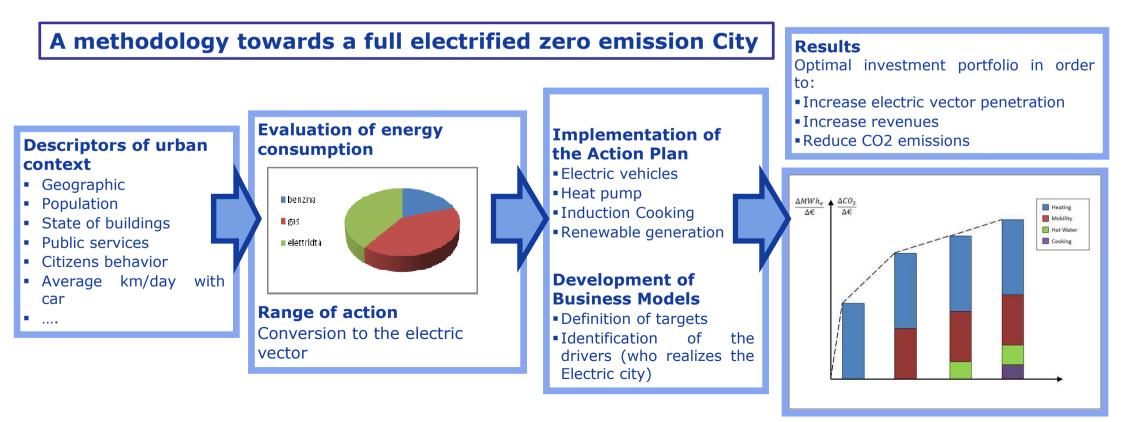


Fostering e-mobility

Impact on the grid and enviromental benefits

Evaluation of the impact of the EV on electric system and definition of the best practices for diffusion

- Development of algorithm to calculate the benefits of the use of EVs, comparing and quantifying the efficiency of the energy chain (well-to-wheel), the emission of GHG gases and other pollutants, and the impact of EVs on the bulk power system, in terms of reliability and primary energy consumption
- Field measurements of pollutants from traffic in urban environment
- ✓ Data analyses on Pisa, Rome and Milan evehicles tests (ongoing)



Towards full electric cities

Goals

- Integration of the best technologies to provide valuable services through electricity, while minimizing primary energy consumption and urban pollution.
- Development and demonstration of the "ElectriCity" concept, able to optimize energy management and life quality in whole urbane areas

Enabling Know-how

Development of a reference archive of distribution networks

Expected results:

Libraries of models:

- Typical Configurations of Italian MV/LV
 Distribution Networks
- Generation, storage and compensation systems, loads
- Distribution network components, supplied with a database of technical characteristics
- Evolution Scenarios of distribution systems, together with case study simulations
- Web Site/Forum for networks, models and results exchange

Benchmark with current state of the art:

- DG and electronic interfaces modeling consolidation
- Stochastic nature representation of intermittent primary resources
- Operation models taking into account price and volume signals

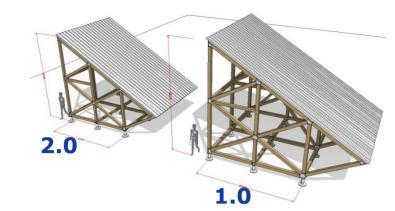
Results achieved so far:

- Identification of key parameters for the characterization of each reference grid
- DMS logics implementation

Average indexes values for the generalized reference networks

Туре	Load_dens	MV/LV	Lenght	Users_dens	Gen
	[kVA/km]	[km/km]	[km]	[1/km]	[kVA/km]
RUR	216.7	0.280	168.1	80.5	35.1
IND	418.6	0.787	104.4	108.1	68.2
URB	771.7	0.592	80.3	208.1	21.0

Average indexes have been calculated for each area in order to provide a generalized classification of reference grids

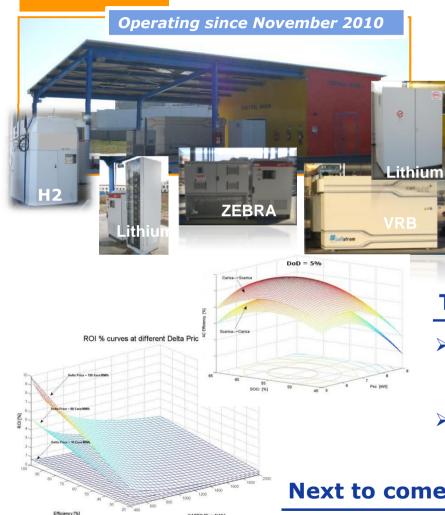


Remote areas

TOB system – energy & services for local use

Internal surface available	1.0	2.0			
Ground floor:	30 m ²	20 m ²			
Utility room:	10 m ²	7m ²			
Maximum height					
 from ground floor 	6mt	5mt			
Foundations:					
• All terrain screw piles (no co	ncrete bas	es needed)			
PV power production:					
 PV roof available surface: 	54 m ²	37 m ²			
 Installed power: up to 	9 kW	7.5 kW			
Average daily energy available:					
• 30 kWh*					
Energy storage:					
Gel sealed lead acid batteries	5				
Night time/overcast use, cap	acity 8 kW	/h or more			
Loads:					
Internal/external LED lightnin	ng				
 Portable/rechargeable LED lamps 					
 Notebook 					
Electricity plugs for appliance	es and e-v	ehicle			
Capability to manage appliance	es and mic	ro-grids:			
 10 kW or more 					
Transportation:					
 4 fully equipped basic units f 	it inside a	20ft container			

- Installation:
- 1 week without heavy tools and specialized workers



Remote areas Towards creation of micro-grids

Enabling Technologies Storage Systems - activities

Modeling and Experimental assessment

- > Assess technologies **KPI** (Key Performances Indicators) in different regimes and evaluate operating readiness for utility applications
- > Develop **guidelines for integration** of components to ensure proper performances
- > Develop optimal **control algorithms** for Enel applications
- > Address cradle-to-grave issues related to the deployment of storage and interconnection to the grid

Technical – economical evaluations

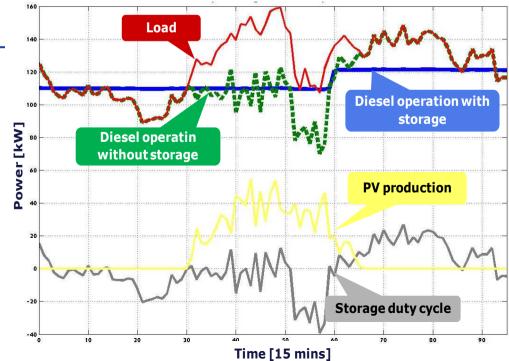
- > Evaluate economic and technical viability of storage applications (renewable integration, isolated grid management, ancillary services provision, etc.)
- > Identification of **business opportunities** and development of tailored management strategies

Next to come

- Autonomous operation and islanding capability to support microgrid operation
- > Synergic use of energy storage, power electronics, distributed generation and backup engines

Enabling Technologies

Storage Systems – Ventotene Island Demo


Ventotene today

- Peak load 900÷1200 kW during summer
- 4 diesel engines (600 kVA each) and a MV distribution ring
- Increase of residential PV plants caused grid stability problems (frequency, voltage, etc.)
- Diesel engines operated at low load factors

Demonstration Project

- Integration of a Lithium battery (300÷500 kW, 600 kWh) with the diesel power station
- Benefits:
 - Optimize conventional generation operation for **fuel saving** and **emission abatement**
 - Decrease of average cost of electricity
 - Life extension of conventional assets
 - Optimization of reserve assets
 - Increase of renewable hosting capacity

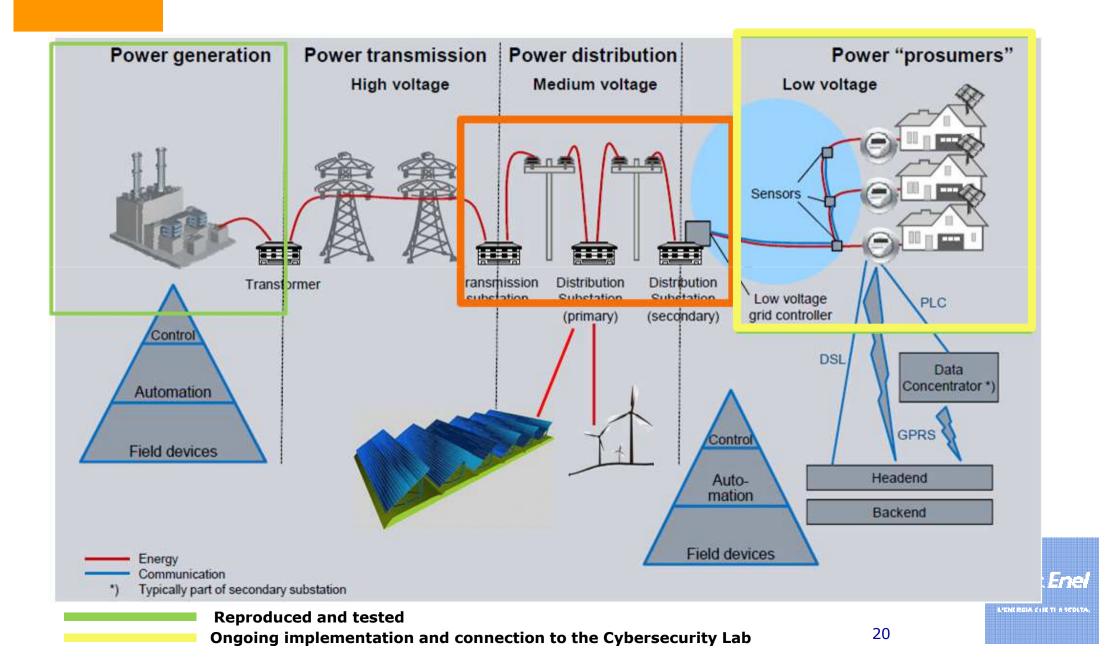
Enabling Know-how SCADA Cyber-Security Lab

Dedicated assets

- Network infrastructure replica
- Power plant infrastructure replica
- Remote Control system replica (SCADA, RTU, IEC 104)
- IDROLab test plant with sensors and actuators
- Attack and Observer Area + control room
 Next step
- Smart Power "Prosumer" systems replica

3)

Activities & objectives


- Execution of Vulnerability & Attack tests
- Definition and validation of new security policies and Countermeasures
- Comparison of security level of different architectures
- Continuous monitoring and check of **standards**

Enel SCADA Security Lab is the first laboratory in Europe for ICT security test and analysis of <u>Generation</u> power plants (JRC source)

Enabling Know-how SCADA Cyber-Security Lab

New fields of investigation

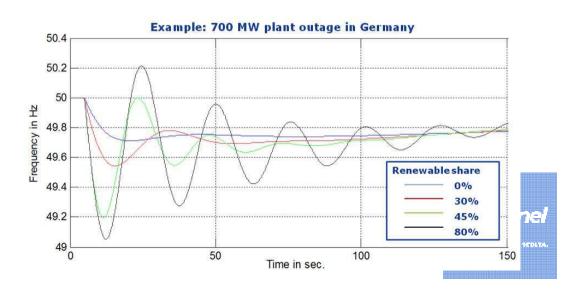
Inverter modeling and testing

Goal:

Assess and develop advanced inverter functionalities to provide grid support

Activity:

Simulation and field validation of inverters (Livorno)


System stability analysis

Goal:

Estimation of variable renewables effects on system stability and identification of business opportunities

Activity:

Stability analysis of the Italian electric system in three different scenarios

Thank you for your attention!

