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COURSE CONTENTS

1. Systems analysis (stability, controllability, observability), and synthesis of
feedback controllers and state estimators

2. Systems identification (=get dynamical models from data)

3. Analysis and control of linear parameter-varying systems
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DYNAMICAL SYSTEMS



DYNAMICAL SYSTEMS

¢ Adynamical system is an object (or a set of objects) that evolves over time,
possibly under external excitations.

e Examples: an engine, a satellite, a tank reactor, a human transporter, ...

M, engine
position torque
thrusters attitude
—_—
reactant
concentration/
temperature
motor / vertical
vessel voltage \ position
concentration/
temperature
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DYNAMIC MS

e .. asupply chain, a portfolio, a computer server

asset == portfolio
quantities v 5 | wealth task
allocation

quality
of service

L o
raw . items
materials - p >w sold
Eaiw > A
factory warehouse distributor/retailer

e The way the system evolves over time is called the dynamics of the system.
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DYNAMICAL MODELS

e Adynamical model of a system is a set of mathematical laws that explain how
the system evolves over time, usually under the effect of external excitations, in
quantitative way.

o What is the purpose of a dynamical model ?

1. Understand the system (“How does X influence Y ?”)
2. Simulation (“What happens if | apply action Z on the system ?”)

3. Estimate (“How to estimate variable X from measuring Y ?”)

4. Control (“How to make the system behave autonomously the way | want ?”)
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LINEAR SYSTEMS



CONTINUQUS-TIME LINEAR SYSTEMS

e System of n first-order differential equations with inputs

1 (t) = a11x1 (t) + ...+ alnmn(t) +b1u(t)
22 (t) = aznz1(t) + ... +aznzn(t) +bau(t)
a':n(t). = ;znlm(t) + ...+ annzn(t) .—&—bnu(t)

21(0) =z10, ... xn(0) =2xno

e Settingz = [z ... z,])" € R", the equivalent matrix form is the so-called

linear system
#(t) = Ax(t) + Bu(t)

with initial condition
(E(O) =Xy = [1'10 xno]/ e R"
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EXAMPLE: MASS-SPRING-DAMPER SYSTEM

1 t 9 2 t

), a:(0)

u(?)

— 5

g M
=

Z1(t) = za(t) velocity = derivative of traveled space

Mio(t) = u— Bra(t) — Kz1(t) Newbtow's Law

Rewrite as the 2"d order linear system
L = 2a(t)
Bralt) — B (t) — Koy (t) + Lult)

or in matrix form

0 1 0
z(t) = [_K _B]x(t)+ 1]u(z&)
M . M 1\;1
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n1-ORDER LINEAR ODE WITH INPUT

dy™ () dy™ =) (t) .
a an—1—" T + -+ a1y(t) + aoy(t)
d (n—1) t d (n—2) t
= bn—luT() + b"72uT() 4 -+ bra(t) + bou(t)

By inspection the nt"-order ODE = 15t-order linear system of ODEs

z(t) = Ax(t) + Bul(t)
1) = z2() y(t) = Cz(t) + Du(t)
zo(t) = z3(t) v .
: 0o 0 1 0 9
' ' A= o |.B=]:
in(t) = —aoz1(t)+ ... — an—17n(t) + u(t) o, ;
y(t) = bOiUl(t) + ...+ bn—lwn(t) —ag —a1 —ag ... —Gp_1 1

C=[bobiba... bp_1], D=0

The linear system of 15t-order ODEs is called the state-space realization of the
n'P-order ODE. There are infinitely many realizations.
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LAGRANGE'S FORMULA

e For the continuous-time linear system & = Ax + Bu with initial condition
x(0) = zy € R, there exists a unique solution z(t)

¢
z(t) = et +/ A7) Bu(r)dr
W—/ 0

naAwral respokse

’QOrc(‘.A response

e The exponential matrix is defined as

a2 Angr

A
e 2T+ AL+ 5 + ...+ ol + .. E=expm(A*t)
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STATE VECTOR

e Givenz(0) and u(t), vVt € [0, T, Lagrange’s formula allows us to compute z(t)
and y(t), vt € [0,T]

o Generally speaking, the state of a dynamical system is a set of variables that
completely summarizes the past history of the system. It allows us to predict its
future motion

e Therefore, by knowing the initial state (0) we can neglect all past history
u(—t), z(—t),vt > 0

¢ The dimension n of the state z(t) € R” is called the order of the system
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EIGENVALUES AND EIGENVECTORS

e Letusrecall some basic concepts of linear algebra:

a1 a2 ... Glp
a1 a2 ... aq
A= square matrix of order n, A € R™*™
anl Aan2 ... Ann
1 0 0
0 1 0
I= . identity matrix of order n
0 0 1

e Characteristic equation of A:
det(\[ — A) =0

e Characteristic polynomial of A:
P(A) = det(Al — A) = A" + @, A 4+ arh + ag
11/144
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EIGENVALUES AND EIGENVECTORS

e Theeigenvalues of A € R™*™ are the roots A, ..., A, of its characteristic
polynomial
det(\MI—A)=0, i=1,2,...,n

An eigenvector of A is any vector v; € R" such that Av; = \;v; for some
1=1,2,...,n.

o The diagonalization of Ais A = TAT !, where
AL 0 .. 0
0 X... O
A= . .. . :T_lAT,T:[U1|UQ\...|vn}
0 0 ... X

(not all matrices A are diagonalizable, see Jordan normal form)

Algebraic multiplicity of A; = number of coincident roots A; of det(AI — A)

Geometric multiplicity of \; = number of linearly independent eigenvectors v;
such that Av; = A\;v;.
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EIGENVALUES AND MODES

e Letu(t) = 0and assume A diagonalizable

o The state trajectory is the natural response

et .0
z(t) = eMz(0)=TeM T ag = [v1...0,) l .. ] e
’ Ant
[eY 0 ..e'm
[e5} n
= |veMt .. vetnt } D= azetity;
Qn =1

where v;=eigenvector of A, \;=eigenvalue of A,a = T~12(0) € R

¢ The evolution of the system depends on the eigenvalues \; of A, called modes
of the system (sometimes we also refer to e** as the i-th mode)

e Amode ); is called excited if ; # 0
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SOME CLASSES OF DYNAMICAL SYSTEMS

e Causality: a dynamical system is causal if y(¢) does not depend on future inputs
u(T) V1 > t (strictly causal if V7 > t)

e Alinear system is always causal, and strictly causal iff D = 0

e Linear time-varying (LTV) systems:

B(t) = A(t)z(t)+ B(t)u(t)
y(t) = C(e(t) + D(tu(t)

e When A, B, C, D are constant, the system is said linear time-invariant (LTI)
e Multivariable systems: more generally, a system can have m inputs
(u(t) € R™)and p outputs (y(t) € RP). For linear systems, we still have

Ax(t) + Bu(t)
Cz(t) + Du(t)

/_/H
< B
—~
o~
~— —
I

with
AeR"™" BeR"™™ CeRP" DeRP™

©2018 A. Bemporad - * " Identification, Analysis and Control of Dynamical Systems" 14/144



SOME CLASSES OF DYNAMICAL SYSTEMS

e Nonlinear systems
it) = f(z(t),u))
y(t) = g(z(t),u(t))

where f : R*T™ — R, g : R"*™ — RP are (arbitrary) nonlinear functions

e Time-varying nonlinear systems are very general classes of dynamical systems

{x'(t) = f(t,z(t),u(t)

~+

S
—~

o~
~—
=

y(t) = g(t,=(t)
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STABILITY



EQUILIBRIUM

e Consider the continuous-time nonlinear system

A state z,, € R™ and an input u,, € R™ are an equilibrium pair if for initial
condition z(0) = z, and constant input u(t) = u, the state remains constant:
x(t) =, VYt > 0.

e Equivalent definition: (z,, u,) is an equilibrium pair if f(z,,u,) =0
e 1. is called equilibrium state, u,. equilibrium input

e The definition generalizes to time-varying nonlinear systems
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STABILITY

e Consider the nonlinear system

\
=
8
=
:_/
g

5
~—

i(t) =
y(t) = g(z(t),ur)

and let - an equilibrium state, f(x,, u,) = 0

Definition
The equilibrium state x,. is stable if for each initial conditions z(0) “close

enough” to ., the corresponding trajectory x(¢) remains near z,. for all t > 0.
a

9Analytic definition: Ve > 038 > 0: [|z(0) — z»|| < § = ||z(t) — zr|| < &Vt > 0.

e The equilibrium point x,.is called asymptotically stable if it is stable and
z(t) =z, fort — oo
e Otherwise, the equilibrium point z,. is called unstable
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STABILITY OF EQUILIBRIA - EXAMPLES

0

stable equiubrium

QSijEoELcaLL:j
stable equitibrium

;

Y
X, - o

x0

unstable
equ.i.Li.bri.um

\/—Z‘
[ FC N B TR E

dr [ —2z1(t) — 4z2(t) d (8 — 2wt
o lamigeni] E =[G
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dx
dt

_ [ 2m1(t;1—(3x2(t) }
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STABILITY OF FIRST-ORDER LINEAR SYSTEMS

e Consider the first-order linear system
&(t) = ax(t) + bu(t)

e 1, = 0,u, = 0isanequilibrium pair
e Foru(t) =0,Vt > 0, the solution is

z(t) = ey

e Theoriginz, = 0is

- unstableifa > 0
- stableifa <0
- asymptotically stableifa < 0 8: ; 0
X
0 a0
X a<0
r
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STABILITY OF CONTINUOUS-TIME LINEAR SYSTEMS

Since the natural response of & = Az + Buis z(t) = ez, the stability
properties depend only on A. We can therefore talk about system stability of a
linear system (A, B, C, D)

Let A1, ..., A, m < n be the eigenvalues of A € R"*"™. The system & =
Ax + Buis
e asymptotically stableiff R\; < 0,Vi=1,...,m
o (marginally) stableif ®\; < 0,Vi = 1,...,m, and the eigenvalues
with null real part have equal algebraic and geometric multiplicity
e unstableif 37 suchthat ®\; > 0.

The stability properties of a linear system only depend on the real part of
the eigenvalues of matrix A
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STABILITY OF CONTINUOUS-TIME LINEAR SYSTEMS

Proof:

e Thenaturalresponseis z(t) = etz (€At = I+ At + # +o AR )
e |f matrix Ais diagonalizable1 JA=TAT L,

A1 O ... 0 eMt o0 L

0 Ay... O 0 er2t ... 0
A=|. .. . |=>eM=T]| . L. !

0 0 ... X 0 0 .. eMnt

o Take any eigenvalue A = a + jb:

‘GM| _ 6at‘ejbt| — 6at

e Aisalways diagonalizable if algebraic multiplicity = geometric multiplicity

O

LIf Ais not diagonalizable, it can be transformed to Jordan form. In this case the natural response
z(t) contains modes tieM, 5 =0,1,...,alg multiplicity - geom. multiplicity
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LINEARIZATION OF NONLINEAR SYSTEMS

e Consider the nonlinear system

= [fz(t),ul?))
y(t) = g(a(t), u(t))

o Let (z,,u,)beanequilibrium, f(x,,u,) =0

o Objective: investigate the dynamic behaviour of the system for small
perturbations Au(t) £ u(t) — u, and Az(0) £ 2(0) — ,.
e Theevolution of Ax(t) £ 2(t) — =, is given by

Ax(t) = @(t) — &, = f(a(t), u(t))
= f(Ax(t) + =, Au(t) + uy)

O (@) Aat) + 2L () Bu(t
N——o—

Q

oxr ou
~—
A B
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LINEARIZATION OF NONLINEAR SYSTEMS

e Similarly
0 0
Ay(t) =~ g(xr,u,,) Ax(t) + 6sz (p,ur) Au(t)
c D

where Ay(t) £ y(t) — g(z,,u,) is the perturbation of the output from its
equilibrium

e The perturbations Axz(t), Ay(t), and Au(t) are (approximately) ruled by the
linearized system

Az(t) = AAxz(t) + BAu(t)
Ay(t) = CAx(t) + DAu(t)
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LYAPUNOV'S STABILITY



LYAPUNOV'S INDIRECT METHOD

e Consider the nonlinear system &: = f(x), with f differentiable, and assume
x = 0is equilibrium point (f(0) = 0)

e Consider the linearized system & = Ax, with A = g—i

o If & = Axisasymptotically stable, then the origin z = fﬁg also an
asymptotically stable equilibrium for the nonlinear system (locally)

e If & = Az isunstable, then the origin x = 0is an unstable equilibrium for the

nonlinear system

o |f Aismarginally stable, nothing can be said about the stability of the origin
x = 0 for the nonlinear system

Aleksandr Mikhailovich Lyapunov
(1857-1918)
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EXAMPLE: PENDULUM

y(t) = angular displacement
y(t) = angular velocity

j(t) = angular acceleration
u(t) = mg gravity force

hy(t) = viscous friction torque
[ = pendulum length

ml? = pendulum rotational inertia

e mathematical model

ml%jj(t) = —Ilmgsiny(t) — hy(t)

e instate-space form (z1 = y, x2 = 7))
Ty = T2
iy = —%sinw;—Hzy, H=

©2018 A. Bemporad - * " Identification, Analysis and Control of Dynamical Systems" 25/144



EXAMPLE: PENDULUM

Look for equilibrium states:

Tor 0 N Tor = 0
—9sinxy, — Hro, 0 T, = xkm, k=0,1,...
u(t):mgi
h
l
1
h
u(t)=mg
Tor :O,Z‘lr :0,i27r,... L2 :O!xlr :O,:l:ﬂ',:l:37'(',...

n19
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EXAMPLE: PENDULUM

e Linearize the systemaround z1,, = 0,25, =0

0 1
Az(t) = Ax
() [_? ] A
| ——

o find the eigenvalues of A

det(AI—A)=A2+HA+%=o = Al,gzé(—Hi,/H2—4?>

1.5
e R\ 2 < 0= = Az asymptotically 1\ '
stable 08
A ANPN
. . > v
e by Lyapunov’s indirect method o5
z, = [J]is also an asymptotically .
stable equilibrium for the pendulum e
o 2 4 6 8 10
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EXAMPLE: PENDULUM

e Linearize the systemaround z1,, = 7, 22, = 0

o,
g
~
~
\
=
Il
%
+
T
>
\
I
Il
(an)
\
e
Il
DO | =
/T\
| =
H
| =
|+
B~
~|<
N———

e )\; <0,\2 > 0= = Az unstable

()

e by Lyapunov’s indirect method
z, = [§]is also an unstable
equilibrium for the pendulum
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LYAPUNOV'S DIRECT METHOD

o Asecond method exists to analyze global stability of nonlinear systems, based
on the concept of Lyapunov functions

o Keyidea: if the energy of a system dissipates over time, the system
asymptotically reaches a minimum-energy configuration

e Assumptions: consider the autonomous nonlinear system & = f(x), with f(-)
differentiable, and let = = 0 be an equilibrium (f(0) = 0)

e Some definitions of positive definiteness of a function V' : R"” — R

- Viscalled locally positive definite if V(0) = 0 and there exists a ball
B. = {z : ||z||2 < €} around the origin such that V(z) > 0Vz € B, \ 0

V is called globally positive definite if B. = R" (i.e. ¢ — o0)

V' is called negative definite if —V is positive definite

V is called positive semi-definite if V(z) > 0Vx € B,z # 0

- Viscalled positive semi-negative if —V is positive semi-definite
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e Example: letz = [z7 25),V : R? - R
- V(z) = 1 + 23 is globally positive definite

- V(z) = 2} + 23 — 3 is locally positive definite

- V(z) = z + sin? (z2) is locally positive definite and globally positive semi-definite

* “Identification, Analysis and Control of Dynamical Systems' 30/144



LYAPUNOV'S DIRECT METHOD

Theorem
Given the nonlinear system & = f(x), f(0) = 0,letV : R — R be positive
definite in a ball B, around the origin, e > 0,V € C*(R). If the function

V(z)=VV(z)i=VV(x)f(z)

is negative definite on B, then the origin is an asymptotically stable equilib-
rium point with domain of attraction B (lim;_, . o, 2(¢) = Oforall z(0) € B,).
If V(:c) is only negative semi-definite on B, then the the originis a stable equi-
librium point.

v
5
x(t)

Sucha functlon V R™ g R is called a Lyapunov function for the system
©2018 A. Be *Identification, Analysis and Control of Dynamical Sys 31/144
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EXAMPLE OF LYAPUNOV'S DIRECT METHOD

e Consider the following nonlinear system & = f(z) given by

i = (2 + 23 — 2) — 4wy 23
iy = 4a?xe + xo(2? + 23 - 2)

e Thestate x = Ois an equilibrium because z = f(0) =0
e Consider the candidate Lyapunov function

Vi(zy,x9) = 1:% + 1:%
which is globally positive definite. Its time derivative V is
V(wy,w2) = 2(af +23)(2f + 23 — 2)

o Itiseasy tocheck that V (z1, x2) is negative definite if || z||3 = 22 + 23 < 2

e Since for any B, with 0 < € < v/2 the hypotheses of Lyapunov’s theorem are
satisfied, x = 0 is an asymptotically stable equilibrium

e Any B.with0 < e < v/2 is adomain of attraction
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EXAMPLE OF LYAPUNOV'S DIRECT METHOD (CONT'D)

e Cf. LyapunovV’s indirect method: the linearization around x = O is

8f(0,0):[3x%3:c%2 —6z170 H :[2 0]

ox 10z 29 5:1:% + 33:% -2 0o -2

which is an asymptotically stable matrix

e Lyapunov’s indirect method tells us that the origin is locally asymptotically
stable

e Lyapunov’s direct method also tells us that B, is a domain of attraction for all
0<e<?2

o Consider this other example: i = —z3. The origin as an equilibrium. But
afé(;,o) = —3. 0% = 0, so Lyapunov indirect method is useless.
e LyapunoV's direct method with V = 22 provides V = —2z4, and therefore we

can conclude that = 0 is (globally) asymptotically stable
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CASE OF CONTINUOUS-TIME LINEAR SYSTEMS

e Letus apply Lyapunov’s direct method to linear systems & = Ax and choose
V(z) = o' Pz, with P = P’ > 0 (P=positive definite and symmetric matrix)

e Thederivative V(z) = i’ Px + 2’/ Pi: = 2/ (A’P + PA)z
. V(x) is negative definite if and only if the Lyapunov equation
AP+ PA=-Q

is satisfied for some Q > 0 (for example, Q = I)
Theorem

The autonomous linear system & = Ax is asymptotically stable < VQ = 0the
Lyapunov equation A’P + PA = —( has one and only one solution P > 0

MATLAB L )
+— Note the transposition of matrix A !

»P=lyap(A’,Q)
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DISCRETE-TIME SYSTEMS



DISCRETE-TIME MODELS

¥, y(kT) u(kT)
35 4
3.5 _I
344 L
3
25 25
2]
2|
15
1.5 1
0 1 2 3 4 5 0 1 2 3 4 5
time t time t
Sampling of a continuous signal Discrete-time signal

e Discrete-time models describe relationships between sampled variables
x(kTs), u(kTy), y(kTs), k =0,1,...

o The value u(kTy) is kept constant during the sampling interval [T, (k + 1)T)

o Adiscrete-time signal can either represent the sampling of a continuous-time
signal, or be an intrinsically discrete signal

e Discrete-time signals are at the basis of digital controllers (as well as of digital
filters in signal processing)
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DIFFERENCE EQUATION

e Consider the first order difference equation (autonomous system)
x(k+1) = ax(k)
z(0) = xo

e Thesolutionis z(k) = a*x

251
a>1 -
B
2r *
.
—~ i
2 15 *
x *
. —
. a=1
4 2 bt
<
@
051 B 3
O<a<l ¢
<
@ ’y 6
L e S Y
k
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LINEAR DISCRETE-TIME SYSTEM

e Consider the set of n first-order linear difference equations forced by the input
u(k) € R

xl(k —+ 1) = allxl(k) + ...+ aln:cn(k:) +b1u(k)

JTQ(IC + 1) = agla:l(k) + ...+ agnxn(k) +b2u(k)

ok +1) = amzi(k)+ ... +apnxa(k) +byu(k)
1‘1(0) =10, --- xn(O) = ITno

e In compact matrix form:

{ w(k+1) = Ax(k)+ Bu(k)

1

wherez = l :

Tn

e R™
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LINEAR DISCRETE-TIME SYSTEM

e Thesolutionis
k=1
x(k) = AFzg + Z A'Bu(k —1—1)

natural response i=0

foreed response

o |f matrix A is diagonalizable, A = TAT !

A0 .. 0 Moo
0 Az... 0 X 0 X ... 0 1
A=|. .. . |=A4A=T| " _|T°

00 - An 0 0 .. Ak

n

where T = [v1 ... v,] collects n independent eigenvectors.
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EXAMPLE - WEALTH OF A BANK ACCOUNT

e k=year counter

e p=interestrate

o (k)= wealth at the beginning of year k
¢ u(k)=money saved at the end of year k
e 1= initial wealth in bank account

Discrete-time model: w(k+1) = (1+p)x(k)+ulk)
z(0) = o
xo 10 k€ Stored amount of money (keur)
u(k) 5 k€ :
p 10 % R f

;A
z(k) = (1. )10+ (1111)k5=60(1.1)k—50

©2018 A. Bemporad - * " Identification, Analy s< and Control of Dynamical Systems"
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EXAMPLE - SUPPLY CHAIN

T(51$1(k‘) T doxa(k)

e Problem statement:

azxz(k)

At each month k, S purchases the quantity u (k) of raw material

A fraction §;1 of raw material is discarded, a fraction « is shipped to producer P

A fraction o of product is sold by P to retailer R, afraction 95 is discarded

Retailer R returns a fraction 5 of defective products every month and sells a
fraction 3 to customers

e Mathematical model:

xl(k‘ —+ 1)
xz(k‘ —+ ].)

xg(k‘ —+ 1)
y(k)

(1 — a1 —é1)z1(k) + u(k)
1T (k) + (1 — a9 — 52)x2(k)
+B3z3(k)

agza(k) + (1 — B3 — v3)zs(k)
ysz3 (k)

©2018 A. Bemporad - * " Identification, Analysis and Control of Dynamical Systems"

z1(k)
z2 (k)
z3(k)
y(k)

month counter

raw material in S

products in P

productsin R
products sold to customers
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EXAMPLE - STUDENT POPULATION DYNAMICS

e Problem statement:

- 3-yearscourse
percentage of promoted, repeaters, and dropouts are roughly constant
direct enrollment in 2nd and 3rd academic year is not allowed
students cannot enroll for more than 3 years

e Notation:
k Year

z;(k) | Number of students enrolled inyear ¢ atyear k, i = 1,2, 3
u(k) Number of freshmen at year k
y(k) Number of graduates at year k

a; promotion rate during year 4,0 < «; < 1
Bi failure rate during year 4,0 < 8; < 1
i dropout rate duringyear s, v; =1 — a; — B3; > 0

o 3'd-order linear discrete-time system:

zi(k+1) = Puza(k) +u(k)
xg(k + 1) = 121 (k?) + ngg(k)
z3(k+1) = oowa(k)+ Bszs(k)
y(k) = asas(k) )
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EXAMPLE - STUDENT POPULATION DYNAMICS

e |Inmatrix form

B 0 0
z(k+1) = ar P2 0 | x(k)+ u(k)
0 a2 fs 0
y(k) = [0 0 a3 ]a(k)

e Simulation

-
a1 =.60 | f1=.20 .

Qg = .80 52 =15
Qg = .90 63 = .08 o . . _u(k)

u(k) = 50,k = 2012, . ..
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n1-ORDER DIFFERENCE EQUATION

e Consider the n'"-order difference equation forced by u

any(k —n)+an_1ylk—n+1)+--+ay(k — 1) + y(k)
=byu(k—n)+ -+ bu(k — 1) + bou(k)

e Equivalent linear discrete-time system in canonical state matrix form

0 1 0 0 0
0 0 1 0 0
0 0 0 1
—an —Qp—1 —Qp—2 ... —al 1
y(k) = [ (bn —boan) ... (b1 —boa1) ] z(k) + bou(k)
MATLAB

e There are infinitely many state-space realizations

tf2ss

o n'M-order difference equations are very useful for digital filters, digital
controllers, and to reconstruct models from data (system identification)
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MODAL RESPONSE

e Assumeinputu(k) =0,Vk >0
e Assume A is diagonalizable, A = TAT !

e The state trajectory (natural response) is
n
l‘(k) = Akl‘o = TAkT_l.’EQ = Zai)\fvi
i=1

where
- \; =eigenvalues of A
- v; = eigenvectors of A

- oy = coefficients that depend on the initial condition z(0)

(258
o = |: .
am

e The system modes depend on the eigenvalues of A, as in continuous-time

=T '2(0), T = [v1...v5]
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DISCRETE-TIME LINEAR SYSTEM

x(k+1) = Axz(k)+ Bu(k)
y(k) = Cux(k)+ Du(k
z(0) T

e From a given initial condition z(0) and input sequence {u(k)}7° jone can
predict the entire sequence of states z:(k) and outputs y(k),Vk € N

o The state 2(0) summarizes all the past history of the system

e The dimension n of the state x(k) € R™ is called the order of the system

e The system is called proper (or strictly causal) if D = 0

o General multivariable case:

A e R'I’LXTL
z(k) € R” y
B e R™™
u(k) € R™ n
C € Rp
y(k) € Rp m
D € RP
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EQUILIBRIUM

e Consider the discrete-time nonlinear system

ek +1) = fla(k),u(k))
y(k) = g(x(k), u(k))

A state z,, € R™ and an input u,, € R™ are an equilibrium pair if for initial
condition z(0) = z, and constant input u(k) = u,, Vk € N, the state remains
constant: z(k) = z,.,Vk € N.

e Equivalent definition: (z,,u,) is an equilibrium pair if f(z,,u,) = z,
e 1. is called equilibrium state, u,. equilibrium input

o The definition generalizes to time-varying discrete-time nonlinear systems
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STABILITY

e Consider the nonlinear system

z(k+1)
y(k) = g(z(k),u)

and let - an equilibrium state, f(x,, u,) = x,

\
=
8
—
B
~—
g
N

Definition
The equilibrium state x,. is stable if for each initial conditions z(0) “close

enough”to z., the corresponding trajectory z (k) remains near z,. forall & € N.
a

9Analytic definition: Ve > 03§ > 0: [|z(0) — zr|| < § = ||z(k) — z+|| < & Vk € N.

e The equilibrium point z,. is called asymptotically stable if it is stable and
(k) = x,.fork — oo
e Otherwise, the equilibrium point z,. is called unstable
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STABILITY OF FIRST-ORDER LINEAR SYSTEMS

e Consider the first-order linear system
x(k+1) = ax(k) + bu(k)

e 1, = 0,u, = 0isanequilibrium pair
e Foru(k)=0,Vk =0,1,...,thesolutionis

z(k) = a*xz

e Theoriginz, = 0is

- unstableif |a| > 1
25
- stableif|a| <1
2
- asymptotically stable if |a] < 1 _ a1
15
X, a1
05 O<a<l
Xr a=0
GO 2 4 6 8 10
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STABILITY OF DISCRETE-TIME LINEAR SYSTEMS

The natural response of z(k + 1) = Az (k) + Bu(k)isz(k) = A¥x, so stability
only depend on A. We therefore talk about system stability

Let Ay, ..., Am,m < nbetheeigenvaluesof A € R"*". Thesystemz(k+1) =
Az(k) + Bu(k)is
e asymptotically stable iff |\;| < 1,Vi=1,...,m
e (marginally) stableif |\;| < 1,Vi = 1,...,m, and the eigenvalues with
unit modulus have equal algebraic and geometric multiplicity ¢
e unstableif 3isuchthat [A;| > 1

9Algebraic multiplicity of A; = number of coincident roots \; of det(AI — A). Geometric
multiplicity of A\; = number of linearly independent eigenvectors v;, Av; = A\;jv;

The stability properties of a discrete-time linear system only de-
pend on the modulus of the eigenvalues of matrix A
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STABILITY OF DISCRETE-TIME LINEAR SYSTEMS

Proof:
e Thenatural responseis x(k) = Ak
o If matrix A is diagonalizable?, A = TAT 1,
A1 0 ... 0 A oo
0 Az ... O 0xs... 0
A=|. . . |=a=T| |77}
0 0. 6 0k

Take any eigenvalue \ = pe’?:

I\ = pFle?*?] = o

Ais always diagonalizable if algebraic multiplicity - geometric multiplicity

O

2|f Ais not diagonalizable, it can be transformed to Jordan form. In this case the natural response
x(t) contains modes k7 N5 =0,1,...,alg multiplicity = geom. multiplicity
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ZERO EIGENVALUES

e Modes \;=0 determine finite-time convergence to zero.

e This has no continuous-time counterpart, where instead all converging modes
tend to zero in infinite time (e*i?)

e Example: dynamics of a buffer

u(k) ~ TN TN TN
z3(k) z2(k) zi(k)  Jy(k)
mk+1) = (k) (k+1) -g (1> (1)] (k)+{8] (k)
z2(k+1) = w3(k) r = z u
wab+1) = (k) => (0 0 0 1
y(k) = ai(k) y(k) = [1 0 0]$(k)

e Natural response: A3z(0) = 0 for all z(0) € R?
e Foru(k) = 0, the buffer deploys after at most 3 steps !
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EXACT SAMPLING

e Consider the continuos-time system

z(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t)
z(0) = xo

e We want to characterize the value of z(t), y(¢) at the time instants
t=0,Ts, 2T, ..., kT, . . .,under the assumption that the input u(¢) is
constant during each sampling interval (zero-order hold, ZOH)

YO, y(kT) u(o), ukT)

u(t) = a(k), kT < t < (k+ 1)T}

o (k) 2 x(kT,) and 5(k) £ y(kT,) are the state
and the output samples at the k*" sampling
instant, respectively

) 0 2 4 6
time t time t
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EXACT SAMPLING

e Using Lagrange formula, The response of the continuous-time system between
to = kTsandt = (k+ 1)Ts fromx(tg) = x(kTs) is

t
z(t) = eAlt)gite)+ [ At Bu(o)do
to
(k+1)Ts
= AT kT oy AT =0) By () dor
kTg

o Since the input u(t) is piecewise constant, u(o) = a(k), kTs < o < (k 4+ 1)Ts.
By settingT = 0 — kT we get

z((k+ 1)Ty) = eATou(kT,) + (/T eA(TS")dT> Bu(kTs)
0

and hence
T,

z(k+1) = e*oz(k) + (/ S GA(TS_T)dT> Bu(k)
0

which is a linear difference relation between z (k) and @ (k) !
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EXACT SAMPLING

e The discrete-time system
{ 2(k+1) Az(k) + Bu(k)

g(k) = Cz(k)+ Du(k)

depends on the original continuous-time system through the relations

T,
AL eATs B2 </ 6A(TS_T)dT> B, C£C, D=D
0

e Ifu(t) is piecewise constant, (4, B, C, D) provides the exact evolution of state
and output samples at discrete times k7T

Y0, Y(KT)

\ MATLAB

sys=ss(A,B,C,D);
sysd=c2d(sys,Ts);
[Ab,Bb,Cb,Db]=ssdata(sysd);
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CHOICE OF SAMPLING TIME

Rule of thumb: T, ~ ;5 of rise time = time to move from 10% to
90% of the steady-state value, for input u(t) = 1, 2(0) = 0

risetime y(©, y(kT )
0% — | T T TTomremmmeeee e
o9 0 05 1 5 2 25 3 35 4 45 5
é.uﬁ time t
° u(), u(kT )
N T T - T
10%
risetime
: timet 0 05 1 5 2 .25 3 35 45 5
time t
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EULER'S FORWARD METHOD

2((k+1)T)4

a((k + V)T) - 2(kT,

— (KT,

] o/
KT, (k+1)T, t Leonhard Paul Euler
(1707-1783)

e For nonlinear systems @:(t) = f(xz(t), u(t)):
T(k+1) =z(k) + Ts f(2(k), u(k))

e Forlinear systems ©:(¢) = Az(t) + Bu(t):
z((k+1)T,) = (I + TsA)x(kTs) + TsBu(kTy)

A2+ AT,, B&£T,B, C2C, D£D

o AT+ T A+... + T;;‘!‘n + ... Euler’s method =~ exact sampling for Ty, — 0
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EXAMPLE - HYDRAULIC SYSTEM

Continuous-time model

aht) = =220 /() + Su(t)
q(t) a\/ﬁm

Discrete-time model

Pk +1) = k) — B2 /R(k) + Gra(k)
ak) = av2g\/ilk)

level h(t) (m)

p continuous time
j q Euler approximation

R %
time (s)
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IN-STEPS EULER METHOD

e We can obtain the matrices A, B of the discrete-time linearized model while
integrating the nonlinear continuous-time dynamic equations & = f(x, u)

o N-steps explicit forward Euler method: given z(k), u(k), execute the following
steps
1. z2=2(k),A=1,B=0
2. forn=1:N do
e A+ (I+ %%(z,u(k))x‘l
e B+ (I +T%%(w,u(k))3 + L 8L (w, u(k)) A
e T+ x+ st(a:,u(k))
3. end
4. returnz(k + 1) &~ z and matrices A, B suchthat z(k + 1) = Az (k) + Bu(k).

e Property: the difference between the state z(k + 1) and its approximation
computed by the above iterations satisfies || z(k + 1) — z)|| = O (%)

e Explicit forward Runge-Kutta 4 method also available
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TUSTIN'S DISCRETIZATION METHOD

e Assume u(k) constant within the sampling interval. Given the linear system
@ = Ax + Bu, apply the trapezoidal rule to approximate the integral

2k +1) — a(k) = / e #(t)dt = /k e (Az(t) + Bu(t))dt

kTS T,

~ % (Az(k) + Bu(k) + Az(k + 1) + Bu(k)) (trapezoidal rule)

and therefore

(I— %A)x(k +1)=I+ %)x(k) + TsBu(k)

e(k+1) = (1 - 7;514)1 (I + %A) (k) + (I - %A) o Buh)

e Advantage: simpler to compute than exponential matrix, without too much loss
of approximation quality
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Z-TRANSFORM

Consider afunction f(k), f : Z = R, f(k) = 0forallk < 0

Definition
The unilateral Z-transform of f(k) is the function of
the complex variable z € C defined by

F(z)=) f(k)z""

k=0

i
Once F'(z) is computed using the series, it's
extended to all z € C for which F'(z) makes sense

Z-transforms convert difference equations into

Witold Hurewicz . .
algebraic equations.

(1904-1956)

60/144
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EXAMPLES OF Z-TRANSFORMS

e Discrete impulse

o Discrete step

f(k)_]l(k)é{ 0 ifk<0

1 itkso 2=
¢ Geometric sequence

flk)y=d"1(k) = Z[f]=F(2)
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PROPERTIES OF Z-TRANSFORMS

Zkyf1(k) + ko fa(k)] = k1 Z[f1(k)] + k2 Z[f2(k)]

e Linearity
5z

Example: (k) = 33(K) — § 1(1) = Z[f] = 3 - =
e Forward shift®

Zlf(k+1)1(k)] = 2Z[f] — 2f(0)
L E= za—za

Example: f(k) = a* 1 1(k) = Z[f] = 2

62/144
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PROPERTIES OF Z-TRANSFORMS

e Backward shift or unit delay *

Z[f(k = 1) I(k)] = 2~ Z[f]

Example: f(k) = 1(k — 1) = Z[f] = E ey

e Multiplication by %
d

Zlkf (k)] = ~27-Z[f

Example: f(k) =k 1(k) = Z[f] = [E=E

42—1is also called backward shift operator
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DISCRETE-TIME TRANSFER FUNCTION

Apply forward-shift & linearity rules to z(k + 1) = Ax(k) + Bu(k),and
linearity to y(k) = Cxz(k) + Du(k):

X(2) = z(zI —A)tag+ (21 — A)7IBU(2)
Y(z) = 20(z1 — A) g +(C(2I — A)"'B + D)U(2)

Lfkravwsgarw\ of watural response

Lfkravwsgarw\ ng Is.urccé response

Definition

The transfer function of the discrete-time linear system (A, B, C, D) is
G(2)=C(:I —A)'B+D

that is the ration between the Z-transform Y'(z) of the output and the Z-
transform U (z) of the input signals for the initial state zg = 0

MATLAB
»Sys=ss(A,B,C,D,Ts); »G=tf(sys)
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DISCRETE-TIME TRANSFER FUNCTION

K
W® | 4 pep |X® UOK B O
]\.’L’O =0
Example: The linear system
0.5 1 0
k+1) = k k
a(k+ 1) [0 0.5]x(>+ HEQ
y(k) = [1 4} (k)
with sampling time T, = 0.1 s has the transfer function
—2+15 MATLAB
G = — sys=ss([0.5
(Z) 2'2 - 025 é 05(][,?0,11:,] 110,0.1);
G=tf(sys)

Note: Even for discrete-time systems, the transfer .
Transfer function:
function does not depend on the input u(k). It's only a 2+15

property of the linear system $2-025
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DIFFERENCE EQUATIONS

o Consider the nt"-order difference equation forced by u

any(k —n) +an—1y(k —n+1) + -+ ary(k — 1) + y(k)
=byu(k—n)+- -+ bulk—1)

e For zeroinitial conditions we get the transfer function

bpz ™ 4+ b1z " 4 bz
Az "+ ap_1z27 " 4 a2+ 1
biz" t 4 by 2+ by
2"+ a2z M+ tap_1z+a,

G(z) =
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IMPULSE RESPONSE

e Consider the impulsive input u(k) = §(k), U(z) = 1. The corresponding output
y(k) is called impulse response

e The Z-transformof y(k)is Y (z) = G(2) - 1 = G(2)

o Therefore the impulse response coincides with the inverse Z-transform g(k) of
the transfer function G(z)

Example (integrator:)

=
&y
~—
|
(o9
—~
=
u(k)

y(k)
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POLES, EIGENVALUES, MODES

Linear discrete-time system

z(k+1) = Axz(k)+ Bu(k) ol
y(k) = Ca(k)+Dulk) Gl)=C(zI-A)"'B+D & T2
z(0) =0 c(2)

Use the adjugate matrix to represent the inverseof zI — A

C Adj(zI — A)B

ClI-A)"B+D ==

+D

The denominator D¢ (z) = det(21 — A) !

The poles of G(z) coincide with the eigenvalues of A

Well, not always ... (as in continuous time)
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STEADY-STATE SOLUTION AND DC GAIN

o Let A asymptotically stable (|A;| < 1). The natural response vanishes
asymptotically
e Assume constant u(k) = w,., Vk € N. What is the asymptotic value

X = limgy 00 z(k)?
Impose x,.(k + 1) = z,.(k) = Az, + Bu, andgetx, = (I — A)~'Bu,

The corresponding steady-state output i, = Cz,. + Du,. is
yr = (C(I —A)"'B+ D)u,

D Gain
o Cf. final value theorem:
g =l y(k) = lm(z = DY () = lm(z = DGV ()
= lim(z - 1)G(2)—Z = G(1)u, = (C(I — A)~'B + D)u,
z—1 z—1

e (G(1)is called the DC gain of the system
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EXAMPLE - STUDENT POPULATION DYNAMICS

e Recall student population dynamics

2 0 0 1
ak+1) = |6 15 0 |z(k)+ |0 |uk)
0 8 .08 0
yk) = |o o .9] (k)
e DCgain:
-1
100 2 0 0 1
[00.9] ([010} - {.6 15 0 D [0} ~ 0.69
001 0 .8 .08 0
o Transfer function: G(z) = m—grmraress—oo0ar G(1) ~ 0.69
y(k)
[ MATLAB ]
w0 »A=[bT 00; a1 b2 0; 0a2 b3];
»B=[1,0;0];
25| »C=[00a3];
20 »D=[0]
»sys=ss(A,B,C,D,1),
15 »dcgain(sys)
5 ans =
2006 2008 2010 2012 2014 2016 0.6905
sepk

e Foru(k) = 50 students enrolled steadily, y(k) — 0.69 - 50 ~ 34.5 graduate
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CLOSED-LOOP CONTROL



PROPORTIONAL INTEGRAL DERIVATIVE (PID) CONTROLLERS

¢ PID (proportional integrative derivative) controllers are the most used
controllers in industrial automation since the '30s
I de(t)
u(t) = K {e t — e(T)d T —}
(0 = K, e+ [ e(rar + T,
wheree(t) = r(t) — y(t) is the tracking error
o Initially constructed by analog electronic components, today they are
implemented digitally
- ad hoc digital devices
- just few lines of C code included in the control unit
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PID PARAMETERS

r o+ 6 it + u’ Y
O Ti/o e(r)dr K, Process
de(t) ;
Pl Ty—— ]
i ‘it Controller

e K, isthe controller gain, determining the “aggressiveness” of the controller

o T, isthereset time, determining the weight of the integral action. The integral
action guarantees that in steady-state y(t) = r(¢)
e Tyisthe derivative time. Theterme(t) + Ty dfi(tt) provides a “prediction” of the

tracking error at timet + Ty

e We call the controller P,PD, PI, or PID depending on the feedback terms
included in the control law
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STRUCTURE OF PID CONTROLLER

o In practice one implements the following version of the PID controller

1 t
ult) = K, [ br(t) = y(t) + / (r(7) —y(r)dr+  d(t) |
N——’ STl 0 ~—~—
?ro—\;orhnm,\ '\wke%rA,\ derivaive
action acion
acXion

d(t) + 22d(t) = ~Tui (1)

o the reference signal r(¢) is not included in the derivative term (r(¢) may have
abrupt changes)

e the proportional action K, (br(t) — y(t) only uses a fraction b < 1 of the
reference signal r(t)

o the derivative term d(t) is a filtered version of ¢(t)
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DIGITAL IMPLEMENTATION OF PID CONTROLLER

¢ Indigital (=discrete-time) form with sampling time T, the PID controller takes
the following form

u(k) = P(k) + I(k) + D(k)

P(k) = Ky (br(k) — y(k))

I(k+1)=1I(k)+ K;Ts (r(k) —y(k)) forward differences
D(R) = 4Dk = 1) = 2 (y(0h) — y(k — 1)

backward differences
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PID CONTROLLER: PROS AND CONS

Very simple to implement, only 3 parameters to calibrate

It only requires the measurement of the output signal y(t)

The control law does not exploit the knowledge of the model of the process

Achievable closed-loop performance is limited
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STATE-FEEDBACK CONTROL



REACHABILITY ANALYSIS

e Consider the linear discrete-time system

x(k+1) = Az(k) + Bu(k)

withz € R", u € R™ and initial condition 2(0) = z;, € R™
k-1

e Thesolutionis (k) = Az + Z AV Bu(k — 1 —j)
=0
Thesystemz(k + 1) = Az (k) + Bu(k) is (completely) reachable if Vi1, 25 €
R™ there exist k € Nand «(0), u(1),...,u(k — 1) € R™ such that

k-1
xo = APz, + ZAjBu(k: —-1-y)
=0

o Insimple words: a system is completely reachable if from any state x; we can
reach any state x5 at some time k, by applying a suitable input sequence
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REACHABILITY

e Determine a sequence of n inputs transferring the state vector from z; to x5
after n steps

u(n —1)
(n—2)
25— A"ty =[BAB ... A" 'B] ,
X R
u(0)
U

e Thisis equivalent to solve with respect to U the linear system of equations
RU=X

e Matrix R € R™*™™ is called the reachability matrix of the system
e Asolution U exists if and only if X € Im(R)
(Rouché-Capelli theorem: a solution exists < rank([R X]) = rank(R))
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REACHABILITY

The system (A, B) is completely reachable < rank(R) = n

Proof:
(=) Assume (A, B) reachable, choose x; = 0 and 23 = z. Then 3k > 0such

that

k—1
z =Y ABu(k—1-j)
3=0
If K < n,thenclearly x € Im(R). If k > n, by Cayley-Hamilton theorem we
have again « € Im(R). Since x is arbitrary, Im(R) = R", sorank(R) = n.

(<) Ifrank(R) = n,thenIm(R) = R™. Let X = x5 — A"z and
U=[u(n—1) ... u(1) u(0)].Thesystem X = RU can be solved with
respect to U, VX, so any state x; can be transferred to x5 in k = n steps.
Therefore, the system (A, B) is completely reachable.
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MINIMUM-ENERGY CONTROL

e Let (A, B) reachable and consider steering the state from z(0) = z; into

z(k) =z2,k >n u(k —1)
u(k — 2)
mg—Akm:[BAB...A’“’lB} .
— :
o u(0)
U

(Ri. € R™*km js the reachability matrix for k steps)

e Sincerank(Ry) = rank(R) = n,Vk > n (Cayley-Hamilton), we get
rank Ry, = rank[Ry X] =n

e Hence the system X = R, U admits solutions U

Determine the input sequence {u(5) ?;& that brings the state from 2:(0) = 4
k—1

1
toz(k) = x2 with minimum energy — Z lu(h)|? = U'U
] =0
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MINIMUM-ENERGY CONTROL

e The problem is equivalent to finding the solution U of the system of equations

X =RU

with minimum norm ||U |
e We must solve the optimization problem

1
U* = arg min 3 |U|* subjectto X = R U

o Let’s apply the method of Lagrange multipliers:

LW, = 2 U2+ N (X = RoU) Lagrangian function
: grang

MATLAB

" / /\—1
= U= Ry (R Ry,) X U=pinv(RK*X
9L _ X _RU =0 — -

22N

Rk# = ?sewAa'\vN(’.rSC waA iy
¢ Note that Ry R} is invertible because rank(Ry) = rank(R) = n,Vk > n
Bemporad - * "Identification, Analysis and Control of Dynamical Systems" 80/144
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CONTROLLABILITY

e If the system is completely reachable, we have seen that we can bring the state
vector from any value 2:(0) = x; to any other value 2(n) =

e Let’s focus on the subproblem of determining a finite sequence of inputs that
brings the state to the final value z(n) = 0

Definition
Asystemz(k + 1) = Axz(k) + Bu(k) is controllable to the origin in & steps
if Vzo € R™ there exists a sequence u(0), u(1), ..., u(k — 1) € R™ such that
0= Arzg + 350 ATBu(k — 1 - j)

e Controllability is a weaker condition than reachability
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CONTROLLABILITY, STABILIZABILITY

e The linear system of equations

u(k — 1)
u(k — 2)
—A"zo=[BAB ... A" 'B] .
" w(0)

admits a solution if and only if A"z € Im(R), Vo € R”

The system is controllable to the origin (in n steps) if and only if

Im(A™) C Im(R)

A linear system z:(k + 1) = Axz(k) + Bu(k) is called stabilizable if can be
driven asymptotically to the origin

e Stabilizability is a weaker condition than controllability
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REACHABILITY ANALYSIS OF CONTINUOUS-TIME SYSTEMS

o Similar definitions of reachability, controllability, and stabilizability can be given
for continuous-time systems

z(t) = Ax(t) + Bu(t)

e Nodistinction between controllability and reachability in continuous-time
(because no finite-time convergence of modal response exists)

e Reachability matrix and canonical reachability decomposition are identical to
discrete-time

e rank R = nis also a necessary and sufficient condition for reachability

e A, .asymptotically stable (all eigenvalues with negative real part) is also a
necessary and sufficient condition for stabilizability
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STABILIZATION BY STATE FEEDBACK

e Mainidea: design a device that makes the process (A, B, C') asymptotically
stable by manipulating the input u to the process

dynamical process

v(k) +O u(

<

k) (k)

AB |2 o |2

K e Fedbacy

e |[f measurements of the state vector are available, we can set
u(k) = kix1 (k) + kaxa(k) + ... + kpan (k) + v(k)

e v(k) is an exogenous signal exciting the closed-loop system

Problem
Find a feedback gain K = [k ks ... k] that makes the closed-loop system
asymptotically stable.
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STABILIZATION BY STATE FEEDBACK

(k) +O u(k) A,B '_Z(&. C Wy(k)

closed-loop system

o Letu(k) = Kz(k) + v(k). The overall systemis

z(k+1) = (A+ BK)x(k)+ Bv(k)
y(k) = (C+ DK)x(k)+ Du(k)

Theorem
(A, B) "reachable” (rank [ B AB ... A""'B| = n) = the eigenvalues of
(A + BK) can be decided arbitrarily.
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EIGENVALUE ASSIGNMENT PROBLEM

(A, B) reachable < (A, B) is algebraically equivalent to a pair (A, B) in con-
trollable canonical form

0 0
A= : n—1 B=
0
—ag —a1 ... —Qp-—1 1

The transformation matrix T suchthat A = T-'AT, B = T 'Bis

ai a2 an—1 1
a2 as 1 0
T=[BAB ...A"!B] :
a1 1 0 ... 0
1 0 0 ... 0

where a1, as, . . ., a,,—1 are the coefficients of the characteristic polynomial

pa(A) = A" 4+ a, 1 A"+ ag A+ ag = det(M — A)
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Let (A, B) reachable and assume m = 1 (single input)

Characteristic polynomials:

= A"+ anfl)\n_l + ... 4+ a1\ + ag (open-loop eicenvalues)

= A"+ dn_lAn_l + ...+ di )\ + dg (desired closed-loop eicenvalues)

Let (A, B) be in controllable canonical form

0 0
A= n—1 . B=
0
—aop —a1 ... —Gp-1 1

AsK =[ky ... ky],wehave

A+ BK =

018 A. Bemporad

0

0
—(a() — k1) _(al _k2) _(anfl _kn)
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e The characteristic polynomial of A + BK is therefore
N4 (@1 — k)N 4 (a1 — ko)X + (ag — k1)
e To match p;(\) we impose

ap—ki=do, a1 —ky=dy, ..., an_1—ky=dp_1

Procedure

If (A, B) is in controllable canonical form, the feedback gain

K= [aofdoalfdl ...an_l—dn_l

makes pq(\) the characteristic polynomial of (A + BK)
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o If (A, B)is notin controllable canonical form we must set

K = aofdo al—dl e an_l—dn_l :|
K = KT_l + dont invert 1, solve instead T'K' = K/ wrt K1
where
ai a2 an—1 1
a2 as 1 0
T=R :
an—1 1 0 0
1 0 0 e 0

o Explanation: a matrix M and T~ ! M T have the same eigenvalues

det(\ —T*MT) = det(T"'TA—T 'MT) = det(T~*)det(\] — M)
-det(T) = det(AI — M)

e Since (A4 BK) =T 'AT + T-'BKT = T~'(A + BK)T, it follows that
(A + BK) and (A + BK) have the same eigenvalues
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ACKERMANN'S FORMULA

e Let (A, B) reachable and assume m = 1 (single input)

e Characteristic polynomials:

pA(A) = N+ an_l)\n_l 4+ ...+ a1 A + ag (open-loop eicenvalues)

pd(>\) = \"+ dn_l)\nil 4+ ... 4+ di )\ + dg (desired closed-loop eicenvalues)

. Letpd(A) = A"+ dnflAnfl + ...+ diA+dol + (Thisis n x n matrix D

Ackermann’s formula MATLAB

_ n—1mp1—1 K=-acker(AB,P);
K=-[0...01][BAB ... A""'B] !py(A) e

where P = [\ A2 ... \,] are the desired closed-loop poles
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ZEROS OF CLOSED-LOOP SYSTEM

The zeros of the system are the same under state feedback: Ng (z) = N(z)

Example for 2 € R3: change the coordinates to canonical reachability form

0 1 0 0
A=l 0o o 1 |,B=]o0 ,Kz[kg ks k:l]
—a3 —a2 —ai 1
e Compute N(z)

22+ a1z + az z+a 1 0 1
Adj(zI — A)B = —as z(z+a1) =z 0| =1 =
—azz —agz — a3z 22 1 22
e Adj(zI — A)B does not depend on the coefficients a1, as, as. So also

Adj(zI — A — BK)Bdoes notdependsona; — ki, as — ks, a3 — ks

e N(z) = CAdj(zI — A)B = C Adj(zI — A— BK)B = Ng(2),VYK' € R"
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EXAMPLE - STUDENT POPULATION DYNAMICS

e The open-loop poles are (0.8,0.15,0.2)
e Say we want to place the closed-loop polesin (0.1 & 0.47, 0.1) by setting

u(k) = Kz(k) + Hr(k)

where (k) is the desired reference signal

| MATLAB \

o First, design K by pole placement: ‘ K=-place(AB.LT- A%, 127,17 ‘

e Then choose H such that the DC-gain from r to y is 1:
| MATLAB \
sys_cl=ss(A+B*K,B,C+D*K,D,1);
dc_cl=dcgain(sys_cl);
H=1/dc_cl;

e Weget K =[—0.1300 — 0.2698 0.0067], H = 2.0208
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EXAMPLE - STUDENT POPULATION DYNAMICS

e Compare open-loop vs. closed-loop response

40 - B
20 _I b

0 | ‘ . |

2012 2013 2014 2015 2016 2017 2018 2019 2020

step k
u(k)

120 T T T
100

80 |

60

0 ] ] ‘ ] ‘ ] ‘

2012 2013 2014 2015 2016 2017 2018 2019 2020

step k
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STATE ESTIMATION



OBSERVABILITY

dynamical process

—T Lo
n
L

¢ Implementing a state feedback controller u(k) = Kz(k) requires the entire
state vector z (k)

¢ Problem: often sensors only provide the measurements of output y (k)

o ldea: isit possible to estimate the state x by measuring only the output y and
knowing the applied input « ?

e Observability analysis addresses this problem, telling us when and how the
state estimation problem can be solved
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OBSERVABILITY

* Consider z(k+1) = Az(k)+ Bu(k)
y(k) = Cux(k)+ Du(k)
withz € R",u € R,y € R and initial condition 2(0) = z¢ € R" (°)
e The solution for the output is
k—1
y(k, zo, u(+)) = CA*zg + > CA'Bu(k — 1 - j) + Du(k)
§=0

Definition
The pair of states z; # x5 € R™ is called indistinguishable from the output

y(+) if for any input sequence u/(+)
y(ka 131,11/(')) = y(k,l'g,u()),Vk Z 0

A linear system is called (completely) observable if no pair of states are indis-
tinguishable from the output

SEverything here can be easily generalized to multivariable systems u € R™,y € RP
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OBSERVABILITY

e Consider the problem of reconstructing the initial condition zy from n output
measurements, applying a known input sequence

y(0) = Cuzo+ Du(0)
y(1) = CAzxo+ CBu(0)+ Du(l)
y(n —1) : CA 1z + Z;T:f CA’Bu(n —2 — j) + Du(n — 1)
e Define
. (0) ~ Du(0)
oA y(1) — CBu(0) — Du(1)
0= Y = :
CA‘nfl y(n—1) fZCAjBu(n72fj)fDu(n71)
| —— j=1

This is 8 n X n matrix

This is an n—th dimensional vector
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OBSERVABILITY

e Theinitial state x is determined by solving the linear system
Y = @.’L‘o

The matrix © € R™*" is called the observability matrix of the system

¢ |f we assume perfect knowledge of the output (i.e., no noise on output
measurements), we can always solve the systemY = Oz. In particular:

- Thereis only one solution if rank(©) = n

- There exist infinite solutions if rank(©) < n. In this case, all solutions are given by
zo + ker(©), where xg is any particular solution of the system

e Knowing g, we know z(k) = A¥zq + Ek Y AiBu(k — 1 —i)forallk > 0
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OBSERVABILITY

e The system of equations ©xy = Y has a solution if and only if

rank(©) = rank([©Y]) (Rouché-Capelli Theorem)
e Because we have © € R"*", ifrank(0) = n = rank([©@ Y]) = nforeachY
e The solution is unique if and only if rank(©) = n

e Since the input u(k) influences only the known vector Y, the solvability of the
system Oz = Y is independent from u(k)

e Then, for linear systems the observability property does not depend on the
input signal u(+), it only depends on matrix © (i.e.,on A and C)

e We can study the observability properties of the system for u(k) = 0

©2018 A. Bemporad - * " Identification, Analysis and Control of Dynamical Systems" 98/144



OBSERVABILITY

Alinear system is observable if and only if rank(©) = n

e Asthe observability property of a system depends only on matrices A and C,
we call a pair (4, C') observable if

c
CA

rank . =n
cA!
e |t can be proved that ker(©) is the set of states z € R™ that are
indistinguishable from the origin

for any input sequence u(-)
e Sinceker(©) = {0} if and only if rank(©) = n, a system is observable if and

only if there are no states that are indistinguishable from the origin x = 0
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RECONSTRUCTABILITY

Under observability assumptions, we just saw that it is possible to determine
the initial condition x from n input/output measurements

z(0) =07y

To close the control loop at time k it is enough to know the current z (k)

If the initial condition 2(0) is known, it is possible to calculate z (k) as

k—1
z(k) = A*O7'Y + Y " A'Bu(k —1—1)
=0

Question: Can we determine the current state z:(k) even if the system is not
completely observable?
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RECONSTRUCTABILITY

Alinearsystemx(k+1) = Az(k)+ Bu(k)is called reconstructable in k steps

if, for each initial condition z¢, (k) is uniquely determined by {u(j), y(4) ;?;3
The solutions of the system
[ 5(0) — Du(0) ] o
y(1) — CBu(0) — Du(1
| ( ) ) ou
Y, & = T
k=2 :
y(k—1) =Y CA'Bu(k — 2 — j) + Du(k — 1) CAk-1
: = -

are given by x = ¢ + ker(Oy), where z is the “true” (unknown) initial state
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RECONSTRUCTABILITY

e Let ¢ be theinitial (unknown) “true” state, and x = x¢ + Z be a generic initial
state, where Z € ker(Oy,). An estimation Z(k) of the current state z:(k) is

k—1
(k) = AFxo + A¥2 + > A/ Bu(k -1 - j)

j=1

e #(k) coincides with z(k) if and only if z € ker( A¥). Because this must hold for
any Z € ker(©y), we have the following

Lemma

A system is reconstructable in k steps if and only if ker(0},) C ker(A¥)

A system is called detectable if it is reconstructable asymptotically for t —
“+00
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STATE ESTIMATION

State estimation problem

At each time k construct an estimate @ (k) of the state x(k), by only measuring
the output y(k) and input u(k).

e Open-loop observer: Build an artificial copy of the system, fed in parallel by
with the same input signal u (k)

(dynamical process
u(k) (k) y(k)

i AB

—_—
true state

AB |— i@

state estimate

e The “copy” is a numerical simulator &(k + 1) = AZ(k) + Bu(k) reproducing
the behavior of the real system
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OPEN-LOOP OBSERVER

dynamical process

—_—
true state

.| AB
(

» AB |—— ik

state estimate

e The dynamics of the real system and of the numerical copy are

z(k+1) = Ax(k)+ Bu(k) True process
#(k+1) = Az(k)+ Bu(k) Numerical copy

e The dynamics of the estimation error (k) = z(k) — Z(k) are
Z(k + 1) = Az(k) + Bu(k) — Az(k) — Bu(k) = Az(k)
and then (k) = A*(x(0) — 2(0))
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OPEN-LOOP OBSERVER

dynamical process

true state

A B |— ik

) h
state estimate

The estimation error is 7(k) = A¥(z(0) — £(0)). This is not ideal, because

e The dynamics of the estimation error are fixed by the eigenvalues of A and
cannot be modified

e The estimation error vanishes asymptotically if and only if A is asymptotically
stable

¢ Note that we are not exploiting (k) to compute the state estimate Z (k) !
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LUENBERGER OBSERVER

dynamical process ]
u(k z(k k
( )l A’B true(st)ate C J o
(k) 501 A
:: A’[B L] itate C ?/_.C)
estimate

state observer

Luenberger observer: Correct the estimation equation with a
feedback from the estimation error y(k) — 4 (k)

#(k+1) = Az(k) + Bu(k) +  L(y(k) — Ci(k))
—_———

feedrack on estimation error David G. Luenberger
(1937-)

where L € R™*P is the observer gain
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LUENBERGER OBSERVER

dynamical process

(B -
= EOTT T

estimate
state observer

ﬁ

¢ The dynamics of the state estimation error Z(k) = z(k) — &(k) is
z(k+1) Ax(k) + Bu(k) — Az (k) — Bu(k) — L[y(k) — C(k)]
= (A-LO)z(k)

andthen #(k) = (A — LC)*(x(0) — £(0))
e Same idea for continuous-time systems z(t) = Az(t) + Bu(t)

dz(t
% = Ai(t) + Bu(t) + Lly(t) — Ci(t)]
The dynamics of the state estimation error are dz(t (A—LC)x(t)
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EIGENVALUE ASSIGNMENT OF STATE OBSERVER

If the pair (A4, C) is “observable” (= (A’, C") “reachable”), then the eigenvalues

of (A — LC) can be placed arbitrarily.

[ MATLAB |
where P = [A1 s
L=acker(A,C'P); ) [A1 A2
L=place(A,C,P); eigenvalues
80
—true state
—estimator L1
60r —estimator L2
—estimator L3

40y,

20

05

20 10 20 30 40
time ()
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.. A\n] = desired observer

response from initial conditions
2(0) = [71],2(0) = [8] for

u(k) = 0.1 for different choices of
the observer poles
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DYNAMIC COMPENSATORS



POTENTIAL ISSUES IN STATE FEEDBACK CONTROL

e Measuring the entire state vector may be too expensive (many sensors)

e [t may be even impossible (high temperature, high pressure, inaccessible
environment)

Can we use the estimate Z (k) instead of z(k) to close the loop ?
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DYNAMIC COMPENSATOR

dynamical process

o) L =) | 1w
‘ LA 9 |

v(k) | N (k) state
estimator

dynamic output feedback controller

e Assume the open-loop system is completely observable and reachable
e Construct the linear state observer

#(k +1) = Ad(k) + Bu(k) + L(y(k) — Ca(k))

o Setu(k) = Ki(k) + v(k)
e The dynamics of the error estimate (k) = z(k) — Z(k) is

#(k+1) = Az(k)+Bu(k)— Ai(k)— Bu(k)+L(Cz(k)—Ci(k)) = (A—LC)&(k)

The error estimate does not depend on the feedback gain K !

©2018 A. Bemporad - * " Identification, Analysis and Control of Dynamical Systems" 110/144



CLOSED-LOOP DYNAMICS

e Let’'s combine the dynamics of the system, observer, and feedback gain

x(k+1) = Az(k)+ Bu(k)

#(k+1) = Az(k)+ Bu(k)+ L(y(k) — Cz(k))
ulk) = Ki(k)+v(k)
y(k) = Cu(k)

o Take z(k), (k) as state components of the closed-loop system

«k)] [ o ][zk)] ,
:E(k = (it is indeed a chanae of coordinates)

) _I —1||&(k)
e The closed-loop dynamics is
xk+1)|  [A+BK -BK |[ax(k) B
[ﬂk+u_ - 0  A-LC [ﬂm 1o |v®
_ (k)
u) = [c Q[jwﬁ
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CLOSED-LOOP DYNAMICS

e The transfer function from v(k) to y(k) is
-1

2T — A— BK BK B
Glz) = [O O]l 0 2l — A+ LC 0
B (2 — A— BK)™! * B
= |o o] 0 (zI-A+L0) | |0
_ N(z)
= C(zI-A—-BK) 'B=
(= ) Dg(2)

e Evenif we substituted x (k) with Z(k), the input-output behavior of the
closed-loop system didn’t change !

The closed-loop poles can be assigned arbitrarily using dynamic output feed-
back, as in the state feedback case

The closed-loop transfer function does not depend on the observer gain L
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SEPARATION PRINCIPLE

The design of the control gain K and of the observer gain L can be done inde-
pendently

e Watchout! G(z) = C(2I — A — BK)~!Bonlyrepresents the I/O
(=input/output) behavior of the closed-loop system

e The complete set of poles of the closed-loop system are given by
det(2I—[**FX [ BE]) = det(2I-A-BK) det(:1—A+LC) = D (z)Dp(z)
o A zero/pole cancellation of the observer poles has occurred:

B
0

N(z)Dp(z)

G = [ O] CI-["P BN ¢ | = Deimn)
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TRANSIENT EFFECTS OF THE ESTIMATOR GAIN

e [ has an effect on the natural response of the system !

¢ Tosee this, consider the effect of a nonzero initial condition [;Eg; } foru(k) =0

y(0) = Cz(0)
y() = [ o (M B [30)]

_ [c 0} [“‘* ﬁfl’;(g));ﬁf“o)} — O(A + BK)z(0) — CBK#(0)
y2) = |C o] [*PF B3]

— CO(A+ BK)z(1) — CBK#(1)

= CO(A+ BK)?z(0) — C(A + BK)BK#(0) — CBK (A — LO)&(0)

¢ If Z(0) # 0, L has an effect during the transient !
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CHOOSING THE ESTIMATOR GAIN

e Intuitively, if Z(k) is a poor estimate of z(k) then the control action will also be
poor

Rule of thumb: place the observer poles ~ 10 times faster than
the controller poles

e Optimal methods exist to choose the observer poles (Kalman filter)

e Fact: The choice of L is very important for determining the sensitivity of the
closed-loop system with respect to input and output noise
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EXAMPLE: CONTROL OF A DC MOTOR

d3y

d?y
@ P T T

MATLAB

K=1; beta=.3; alpha=1;
G=tf(K,[1 beta alpha 0]);

ts=0.5; % sampling time
Gd=c2d(G,ts);

sysd=ss(Gd);

[A, B, C, D]=ssdata(sysd);

% Controller
polesk=[-1,-0.5+0.6%j,-0.5-0.6*]];
polesKd=exp(ts*polesK);
K=-place(A B,polesKd);

% Observer
polesL=[-10, -9, -8];
polesLd=exp(ts*polesL);
L=place(A,CpolesLd);

MATLAB

% Closed-loop system, state=[x;xhat]

bigA=[A,B*K;L*C,A+B*K-L*C];
bigB=[B;BI;

bigC=[C,zeros(1,3)];

bigD=0;
clsys=ss(bigA,bigB,bigC,bigD,ts);

x0=[111]; % Initial state
xhat0=[0 0 07; % Initial estimate
T=20;

initial(clsys, [xO;xhat0],T);

pause

t=(0:ts:TY;
v=ones(size(t));
Isim(clsys,v);
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EXAMPLE: CONTROL OF A DC MOTOR

2 |
s 25
2

1
15

05
1
0 05

% 5 10 15 20 % 10 15 20
time (s) time (s)
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LINEAR QUADRATIC REGULATION



LINEAR QUADRATIC REGULATION (LQR)

e State-feedback control via pole placement requires one to assign the
closed-loop poles

¢ Any way to place closed-loop poles automatically and optimally ?

e The main control objectives are

1. Make the state z(k) “small” (to converge to the origin)
2. Use “small” input signals u (k) (to minimize actuators’ effort)

These are conflicting goals |

input u(t) ‘ state z(t)
[1 n |
i NA Bk
,: N

e LQRisatechnique to place automatically and optimally the closed-loop poles
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FINITE-TIME OPTIMAL CONTROL

o Consider the linear system z:(k + 1) = Az(k) + Bu(k) with initial condition
(0)

o We look for the optimal sequence of inputs

U= {u(0), u(1), ..., u(N = 1)}

driving the state z(k) towards the origin and that minimizes the performance
index

N-1
J(‘T(O)a U) ( QNQL' + :c u'(k)Ru(k) Quadratic cost
k=0

whereQ =Q' = 0,R=R = 0,Qn = Qy = 0°

$For amatrix @ € R"*™,Q > 0 means that Q is a positive definite matrix, i.e., 2’ Qz > 0 for all
z # 0,z € R™. QN > 0means positive semidefinite, z’Qx > 0,Vx € R™
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FINITE-TIME OPTIMAL CONTROL

e Example: @ diagonal Q = diag(qx, ..., qn),singleinput, Qn =0

J@(0),0) = 3 (Z qix?(m) + Ru(k)

k=0 i=1
e Consider again the general linear quadratic (LQ) problem
N-1

J(2(0),U) = 2" (N)Qnz(N) + ) o' (k)Qu(k) + v’ (k) Ru(k)

k=0

- N is called the time horizon over which we optimize performance

The first term 2’ Qx penalizes the deviation of x from the desired target z = 0

- The second term u’ Ru penalizes actuator authority

The third term 2’ (N)Q Nz (N ) penalizes how much the final state z(N) deviates
fromthetargetz =0

e (), R, QN are the tuning parameters of optimal control design (cf. the
parameters of the PID controller K, T}, T})
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MINIMUM-ENERGY CONTROLLABILITY

e Consider again the problem of controllability of the state to zero with minimum
energy input

ming
u(N —1)
s.t. z(N)=0

e The minimum-energy control problem can be seen as a particular case of the LQ
optimal control problem by setting

R:Ia Q:07 QN:OOI
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SOLUTION T0 LQ OPTIMAL CONTROL PROBLEM

o Bysubstituting z(k) = A¥z(0) + X" A'Bu(k — 1 —i)in
N-1

J(x(0),U) = Z 2’ (k)Qx(k) + u' (k) Ru(k) + 2/ (N)Qnz(N)

k=0

we obtain
1 1
J(2(0),U) = §U’HU +z(0)'FU + im(o)’Ym(O)

where H = H' = (is a positive definite matrix
e The optimizer U* is obtained by zeroing the gradient

0 = VyJ((0),U)=HU + F'z(0)
u*(0)
* U*(l) —1 7
— Ut = : = —H'F'2(0)
u*(N -1
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[LQ PROBLEM MATRIX COMPUTATIONI

x(1) ‘'TQ o 0 011 =«(1)
x(2) 0 Q 0 0 z(2)
J(@(0),U) = 2'(0)Q=(0)+ : o : ; : +
z(NAf 1) 0 o 0 Q 0 z(NAf 1)
z(N) 0 0 0 Qn 1 L z(N) |
Q
R 0 0711 wu(0)
0 R ... o0 w(1)
[w () /(1) ... W/(N-1)] .
o .. o Rlluwn-1n]
- -
R
S
=(1) B 0 A7
z(2) AB B 0 u(0) A2
- [ w(1) +| . |20
: : . . : N1 :
@(N) AN=-1p sN-2 B ut ) AN
\_Y_'z
N
J(x(0),U) = 2'(0)Qz(0) + (SU + Nz(0))' Q(SU + Nz(0)) + U'RU

1 1B s 5E ’ !~ E 1 ! S
= —U 2(R+5'QS)U 0)2N'QSU — 0)2 N QN 0
> ( +HQ) + = (0) FQ +21()(Q+YQ ), =(0)
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SOLUTION T0 LQ OPTIMAL CONTROL PROBLEM

e The solution

u* (N —1)
is an open-loop one: u(k) = fr(x(0)),k=0,1,...,N —1

e Moreover the dimensions of the H and F' matrices is proportional to the time
horizon N

e We use optimality principles next to find a better solution (computationally
more efficient, and more elegant)
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DYNAMIC PROGRAMMING

e Consider the following basic fact in optimization
Vo £ min f(z,y) =min{ min f(z,y) }
z,y z Y

this is a function of z

e Incase f is separable in the sum of two functions
f(z9) = fo(2) + fi(z,y)

we getminy, f(z,y) = fo(2) + miny fi(z,y)
o Therefore we can compute 1 in two steps

Vi(z) = myinfl(Z,y)
Vo = mzin{fo(z)—i—Vl(z)}

e We apply the above reasoning to f = J(2(0),U),z = [«/(0) ... u(ky — 1)),
y=[u(k) ... u(N=1)]
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DYNAMIC PROGRAMMING

e Atagenericinstant k; and state 2(k;) = z consider the optimal cost-to-go

Vie(2) = min, {Z 2 (k) Qa(k) + v (k) Ru(k) + w’(N)QNa:uv)}

Vo(2(0)) = min J(x(0),U)
U2{u(0),...,u(N-1)}

—  min { Z_j o' (k)Qx (k) + v (k) Ru(k) + Vi, (x(k:l))}

u(0),...,u(k1—1) P

e Starting at 2(0), the minimum cost over [0, N] equals the minimum cost spent
until step k1 plus the optimal cost-to-go from k4 to NV starting at z (k)
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BELLMAN'S PRINCIPLE OF OPTIMALITY

Given the optimal sequence U* = [u"(0),..., v (N — 1)]
(and the corresponding optimal trajectory z* (k)), the subsequence
[u*(k1),...,u”(N — 1)] is optimal for the problem on the horizon
[k1, N], starting from the optimal state z* (k1)

Richard Bellman
(1920-1984)

optimal state z*(k)

¢ Given the state 2* (k1 ), the optimal input trajectory u*
3 on the remaining interval [k, N] only depends on
e ]iv“‘“e x* (k1)
optimal input u* (k) ¢ Then each optimal move u* (k) of the optimal trajectory
e on [0, N]only depends on z* (k)
e The optimal control policy can be always expressed in
state feedback form u* (k) = u*(x*(k)) !

: time
;

wm N
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BELLMAN'S PRINCIPLE OF OPTIMALITY

e The principle also applies to nonlinear systems

optimal state trajectories z*
and/or non-quadratic cost functions: the optimal B

1]

L —
control law can be always written in state-feedback K (’“‘\\\
[~
form —
R
u* (k) = fu(z*(k)), Vk=0,...,N —1 NS

/1/

=)

[

I[X;
l
\

e Compared to the open-loop solution {u*(0), ..., u*(N — 1)} = f(z(0)) the
feedback form u* (k) = fi(z*(k)) has the big advantage of being more robust
with respect to perturbations: at each time k we apply the best move on the
remaining period [k, V]
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RICCATI ITERATIONS

By applying the dynamic programming principle, we can compute the optimal
inputs u* (k) recursively as a function of z* (k) (Riccati iterations):

1. Initialization: P(N) = Qn
2. Fork = N, ..., 1,compute recursively the following
matrix

P(k—1) = Q—A'P(k)B(R+B'P(k)B) 'B'P(k)A+A'P(k)A
3. Define

K(k)=—(R+B'Pk+1)B)"'B'Pk+1)A

The optimal input is
Jacopo Francesco Riccati
(1676-1754)

u* (k) = K(k)z* (k)
The optimal input policy u* (k) is a (linear time-varying) state feedback !
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LINEAR QUADRATIC REGULATION

e Consider the infinite-horizon optimal control problem

Vo) = min kz + o' (k) Ru(k)

Result
Let (A, B) be a stabilizable pair, R = 0, Q > 0. There exists a unique solution
P of the algebraic Riccati equation (ARE)

Py =AP A+Q— AP B(B'P,B+R)"'B'P,A

such that the optimal cost is V°°(z(0)) = z'(0) Poox(0) and the optimal con-
trol law is the constant linear state feedback u(k) = Kyqrz(k) with

KLQR = 7(R + BIPOOB)ilB/PDOA.

| MATLAB \ | MATLAB \
| Poo =dare(ABQR) | \ [ Koo Pool = dIgr(ABQR) |
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LINEAR QUADRATIC REGULATION

o Go back to Riccati iterations: starting from P(c0) = P, and going backwards
weget P(j) = Px,Vj >0

e Accordingly, we get
K(j)= —(R+B'PB) 'B'P,A= Kiqr, Vi =0,1,...

e The LQR control law is linear and time-invariant
MATLAB FE=closed-loop poles

» [ Koo,Poo E] = Igr(sysd,Q.R) = eigenvalues of (A + BKLqr)

e Closed-loop stability is ensured if (A, B) is stabilizable, R > 0,Q = 0, and
(A, Q%) is detectable, where Q? is the Cholesky factor” of Q

e LQRisanautomatic and optimal way of placing poles !

e Asimilar result holds for continuous-time linear systems ( MATLAB: Iqr)

7Givenamatrix Q = Q' > 0, its Cholesky factor is an upper-triangular matrix C' such that
C’'C = Q (MATLAB: chol)
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LOR WITH OUTPUT WEIGHTING

e We often want to regulate only y(k) = Cz(k) to zero, so define

V(a(0) = min Z V (FIQuu(k) + (k) Ru(k)
e The problemis again an LQR problem with equivalent state weight Q = C'Q,C
MATLAB
» [[Koo,Poc E] = dlgry(sysd,Qy,R)
Corollar
Let (A, B) stabilizable, (A, C) detectable, R > 0, Q, > 0. The LQR control
law u(k) = Kr,qrz(k) the asymptotically stabilizes the closed-loop system

lim z(t) =0, lim u(t) =0
t—o0 ( ) 7 t5o0 ( )

Intuitively: the minimum cost 2’ (0) Poo (0) is finite = y(k) — 0 and u(k) — 0.

y(k) — Oimplies that the observable part of the state — 0. As u(k) — 0, the unobservable states

remain undriven and go to zero spontaneously (=detectability condition)
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LOR EXAMPLE

e Two-dimensional single input single output (SISO) dynamical system (double
integrator)

<
—
2y
~
Il
—
—_
o
[
8
—~
™
~

e Weights: Q = [(1)]'%'[10] = [g

not change the optimal control law
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LOR EXAMPLE

output y(k) p = 0.1(red line)

&\\N K =[~0.8166 — 1.7499]

9 N S SO S S S S S p = 10 (blue line)

input u(k) K =[-0.2114 — 0.7645]

p = 1000 (green line)

I K =[-0.0279 — 0.2505]

Initial state: 2(0) = [}]

V>(x(0)) = min Z

u(0),u(1),...
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KALMAN FILTERING



KALMAN FILTERING -- INTRODUCTION

e Problem: assign observer poles in an optimal way, that is to minimize the state
estimationerrorz =z — 2

¢ Information comes in two ways: from sensors measurements (a posteriori) and
from the model of the system (a priori)

o We need to mix the two information sources optimally, given a probabilistic
description of their reliability (sensor precision, model accuracy)

The Kalman filter solves this problem, and is now
the most used state observer in most engineering
fields (and beyond)

Rudolf E. Kalman™
(1930-2016)

* R.E. Kalman receiving the Medal of Science from the President of the USA on October 7, 2009
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PROCESS MODEL

e The process is modeled as the linear time-varying system with noise

z(k+1) = A(k)z(k)+ B(k)u(k) + G(k)&(k)
y(k) = C(k)z(k) + D(k)u(k) + ((k)
z(0) = a9

o ¢(k) € RY = process noise. We assume E[¢(k)] = 0 (zero mean),
E[E(k)E' (5)] = 0VE # j (white noise),and E[§(k)¢' (k)] = Q(k) = 0
(covariance matrix)

e ((k) € R? = measurement noise, E[¢(k)] = 0, E[C(k)¢' ()] = OVE # 4,
E[C(k)¢'(K)] = R(k) - 0

e x9 € R™isarandom vector, E[xq] = Ty,
E[(zo — Zo)(xo — Zo)'] = Var[ze| = Py, Py = 0

o Vectors¢(k), C(k), zg are uncorrelated: E[¢(k)('(5)] = 0, E[¢(k)x(] = 0,
E[¢(k)x}) = 0,Yk,j € Z

e Probability distributions: we often assume normal (=Gaussian) distributions

§(k) ~ N(0,Q(k)), ((k) ~ N(0, R(K)), mo ~ N (Zo, Fo)
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KALMAN FILTER

Introduce some quantities:

Z(klk —1) state estimate at time k based on
datauptotimek —1
z(klk —1) = x(k) — z(k|k — 1) state estimation error
P(klk — 1) = E[z(klk — 1)Z(k|k — 1)'] | covariance of state estimation error
z(k|k) state estimate at time k
based on data up to time k
Z(klk) = z(k) — z(k|k) State estimation error
P(klk) = E [z(k|k)Z(k|k)'] covariance of state estimation error
(k + 1|k) state prediction at time k + 1
based on data up to time k
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KALMAN FILTER

e The Kalman filter provides the optimal estimate Z(k|k) of z (k) given the
measurements up to time k

e Optimality means that the trace of the variance P(k + 1|k) is minimized
e The filter is based on two steps:

1. measurement update based on the most recent y (k)

M(k) = P(klk—=1)C(k)'[C(k)P(klk = 1)C(k)" + R(K)] !
&(klk) = @(klk—1)+ M(k) (y(k) — C(k)2(k|k — 1) — D(k)u(k))
P(klk) = (I - M(K)C(k)P(klk— 1)

with initial conditions £(0] — 1) = &0, P(0| — 1) = Py

2. time update based on the model of the system
Z(k + 1|k) = Az(k|k) + Bu(k)
P(k +1]k) = A(k)P(k|k)A(k) + G(k)Q(k)G(k)’
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STATIONARY KALMAN FILTER

e Assume A, C, G, Q, R are constant.
e Under suitable assumptions®, P(k|k — 1), M (k) converge to the constant

matrices
Py = AP A +GQG — AP,,C'[CPC' + R] " CP A’
M = P,C'(CP,C'+R)™*

e By setting L = AM the dynamics of the prediction & (k|k — 1) becomes the
Luenberger observer

Z(k+ 1|k) = A2(k|k — 1) + B(k)u(k) + L(y(k) — Ci(k|k — 1) — D(k)u(k))

with all the eigenvalues of (A — LC') inside the unit circle

MATLAB I
»[ L, Poo,M,Z]=kalman(sys,Q,R) Z = B[ (k|k)2(k|k)']

8(A, C) observable, and (A, GB,) stabilizable, where Q = By B;, (B4=Cholesky factor of Q)
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TUNING KALMAN FILTERS

e [tisusually hard to quantify exactly the correct values of ( and R for a given
process

e Thediagonal terms of R are related to how noisy are output sensors

e (isharder torelate to physical noise, it mainly relates to how rough is the
(A, B) model

e After all, @ and R are the tuning knobs of the observer (similar to LQR)

e The“larger” is R with respect to () the “slower” is the observer to converge (L,
M will be small)

e Onthe contrary, the “smaller” is R than (), the more precise are considered the
measurments, and the “faster” observer will be to converge
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EXTENDED KALMAN FILTER

e The Kalman filter can be extended to nonlinear systems
z(k+1) f(x(k), u(k), &(k))
y(k) g(z(k),u(k)) + C(k)

1. Measurement update:

O®) = P (upr,ulk)

M) = Pkl = DO [CO)P(kIE — 1O + R
BHR) = 2kl = 1)+ MOE) (r(8) — g(a(k[E — 1), (k)
Pklk) = (I—-M(k)C(k))P(klk—-1)

2. Time update:
ik + 1k) = f(#(k[k), u(k)), 2(0] - 1) = &
of . of .
A(k) = 5 (@i, u(k), E[E(K)]), G(k) = a(ka,U(lﬂ)?E[f(k)D
P(k+1|k) = A(k)P(k|k)A(k) + G(k)Q(k)G(k), P(0] — 1) = Py

e The EKF is in general not optimal and may even diverge, due to linearization.

But is the de-facto standard in nonlinear state estimation
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LOG CONTROL

e Linear Quadratic Gaussian (LQG) control combines an LQR control law and a
stationary Kalman predictor/filter
e Consider the stochastic dynamical system

z(k+1) = Az(k) + Bu(k) + £(k), w ~ N(0, QkF)
y(k) = Cx(k) + ((k), v ~ N(0, Ricr)

with initial condition z(0) = g, 2o ~ N (Zo, P), P,Qkr = 0, Rxr = 0,and ¢
and ¢ are independent and white noise terms.

e The objective is to minimize the cost function

T
J(z(0),U) = lim %E > 2/ (k)Qroz(k) + v/ (k) RLqu(k)

T—o0
k=0

when the state x is not measurable
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LOG CONTROL

If we assume that all the assumptions for LQR control and Kalman
predictor/filter hold, i.e.

e the pair (4, B) is reachable and the pair (A4, C;;) with C, such that
QLo = C’qC; is observable (here @ is the weight matrix of the LQ controller)

e thepair (4, B,), with B, s.t. Qxr = B, By, is stabilizable, and the pair (A, C) is
observable (here Q) is the covariance matrix of the Kalman predictor/filter)

Then, apply the following procedure:

1. Determine the optimal stationary Kalman predictor/filter, neglecting the fact
that the control variable u is generated through a closed-loop control scheme,
and find the optimal gain Lx ¢

2. Determine the optimal LQR strategy assuming the state accessible, and find the
optimal gain K1qr
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LOG CONTROL

-

dynamical process )
k
A J
e N
v(k) _-.FO-F K z(k) Kalman "J
. LQR fiter |
- J

LQG controller

Analogously to the case of output feedback control using a Luenberger
observer, it is possible to show that the extended state [’ Z']’ has eigenvalues
equal to the eigenvalues of (A + BKgr) plus those of (A — LxpC') (2nin
total)
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