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Course contents

1. Systems analysis (stability, controllability, observability), and synthesis of

feedback controllers and state estimators

2. Systems identification (=get dynamical models from data)

3. Analysis and control of linear parameter-varying systems

©2018 A. Bemporad - ``Identification, Analysis and Control of Dynamical Systems'' 2/144



Dynamical systems



Dynamical systems
• A dynamical system is an object (or a set of objects) that evolves over time,

possibly under external excitations.

• Examples: an engine, a satellite, a tank reactor, a human transporter, ...
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Dynamical systems

• ... a supply chain, a portfolio, a computer server
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• Theway the system evolves over time is called the dynamics of the system.
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Dynamical models

• A dynamical model of a system is a set of mathematical laws that explain how

the system evolves over time, usually under the effect of external excitations, in

quantitativeway.

• What is the purpose of a dynamical model ?

1. Understand the system (“How does X influence Y ?”)

2. Simulation (“What happens if I apply action Z on the system ?”)

3. Estimate (“How to estimate variable X frommeasuring Y ?”)

4. Control (“How tomake the system behave autonomously the way I want ?”)
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Linear systems



Continuous-time linear systems

• System of n first-order differential equations with inputs

ẋ1(t) = a11x1(t) + . . . + a1nxn(t) +b1u(t)

ẋ2(t) = a21x1(t) + . . . + a2nxn(t) +b2u(t)

...
...

...

ẋn(t) = an1x1(t) + . . . + annxn(t) +bnu(t)

x1(0) = x10, . . . xn(0) = xn0

• Setting x = [x1 . . . xn]
′ ∈ Rn, the equivalent matrix form is the so-called

linear system
ẋ(t) = Ax(t) +Bu(t)

with initial condition

x(0) = x0 = [x10 . . . xn0]
′ ∈ Rn
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Example: Mass-spring-damper system
x!(t), x"(t)

M!

u(t)
K

{
ẋ1(t) = x2(t) velocity = derivative of traveled space
Mẋ2(t) = u− βx2(t)−Kx1(t) Newton's law

Rewrite as the 2nd order linear system{
dx1(t)

dt = x2(t)
dx2(t)

dt = − β
M x2(t)− K

M x1(t) +
1
M u(t)

or in matrix form

ẋ(t) =

[
0 1

−K
M

− β
M

]
︸ ︷︷ ︸

A

x(t) +

[
0

1
M

]
︸ ︷︷ ︸

B

u(t)
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nth-order linear ODE with input
dy(n)(t)

dtn
+ an−1

dy(n−1)(t)

dtn−1
+ · · ·+ a1ẏ(t) + a0y(t)

= bn−1
du(n−1)(t)

dt
+ bn−2

du(n−2)(t)

dt
+ · · ·+ b1u̇(t) + b0u(t)

By inspection the nth-order ODE = 1st-order linear system of ODEs



ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

...
...

ẋn(t) = −a0x1(t) + . . . − an−1xn(t) + u(t)

y(t) = b0x1(t) + . . . + bn−1xn(t)

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

A =


0 1 0 ... 0
0 0 1 ... 0

...
...

. . .
...

0 0 0 ... 1
−a0 −a1 −a2 ... −an−1

 , B =


0
0

...
0
1


C = [ b0 b1 b2 ... bn−1 ] , D = 0

The linear system of 1st-order ODEs is called the state-space realization of the

nth-order ODE. There are infinitely many realizations.
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Lagrange's formula

• For the continuous-time linear system ẋ = Ax+Buwith initial condition

x(0) = x0 ∈ Rn, there exists a unique solution x(t)

x(t) = eAtx0︸ ︷︷ ︸
natural response

+

∫ t

0

eA(t−τ)Bu(τ)dτ︸ ︷︷ ︸
forced response

• The exponential matrix is defined as

eAt ≜ I +At+
A2t2

2
+ . . . +

Antn

n!
+ . . .

MATLAB
E=expm(A*t)
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State vector

• Given x(0) and u(t), ∀t ∈ [0, T ], Lagrange’s formula allows us to compute x(t)

and y(t), ∀t ∈ [0, T ]

• Generally speaking, the state of a dynamical system is a set of variables that

completely summarizes the past history of the system. It allows us to predict its

futuremotion

• Therefore, by knowing the initial state x(0)we can neglect all past history

u(−t), x(−t), ∀t ≥ 0

• The dimension n of the state x(t) ∈ Rn is called the order of the system
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Eigenvalues and eigenvectors
• Let us recall some basic concepts of linear algebra:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann

 square matrix of order n, A ∈ Rn×n

I =


1 0 . . . 0

0 1 . . . 0

...
... . . .

...

0 0 . . . 1

 identity matrix of order n

• Characteristic equation ofA:

det(λI −A) = 0

• Characteristic polynomial ofA:

P (λ) = det(λI −A) = λn + an−1λ
n−1 + . . .+ a1λ+ a0
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Eigenvalues and eigenvectors

• The eigenvalues ofA ∈ Rn×n are the roots λ1, …, λn of its characteristic

polynomial

det(λiI −A) = 0, i = 1, 2, . . . , n

• An eigenvector ofA is any vector vi ∈ Rn such thatAvi = λivi for some

i = 1, 2, . . . , n.

• The diagonalization ofA isA = TΛT−1, where

Λ =

 λ1 0 ... 0
0 λ2 ... 0

...
...
. . .

...
0 0 ... λn

 = T−1AT, T = [v1|v2| . . . |vn]

(not all matricesA are diagonalizable, see Jordan normal form)

• Algebraic multiplicity of λi = number of coincident roots λi of det(λI −A)

• Geometric multiplicity of λi = number of linearly independent eigenvectors vi
such thatAvi = λivi.
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Eigenvalues and modes

• Let u(t) ≡ 0 and assumeA diagonalizable

• The state trajectory is the natural response

x(t) = eAtx(0) = TeΛt T−1x0︸ ︷︷ ︸
α

= [v1 . . . vn]

[
eλ1t ... 0

. . .
0 ... eλnt

]
α

=
[
v1e

λ1t . . . vne
λnt
] [ α1

...
αn

]
=

n∑
i=1

αie
λitvi

where vi=eigenvector ofA, λi=eigenvalue ofA,α = T−1x(0) ∈ Rn

• The evolution of the system depends on the eigenvalues λi ofA, calledmodes

of the system (sometimes we also refer to eλit as the i-th mode)

• Amode λi is called excited ifαi ̸= 0
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Some classes of dynamical systems

• Causality: a dynamical system is causal if y(t) does not depend on future inputs

u(τ) ∀τ > t (strictly causal if ∀τ ≥ t)

• A linear system is always causal, and strictly causal iffD = 0

• Linear time-varying (LTV) systems:{
ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

• WhenA,B,C ,D are constant, the system is said linear time-invariant (LTI)

• Multivariable systems: more generally, a system can havem inputs

(u(t) ∈ Rm) and p outputs (y(t) ∈ Rp). For linear systems, we still have{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

with

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m
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Some classes of dynamical systems

• Nonlinear systems {
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

where f : Rn+m → Rn, g : Rn+m → Rp are (arbitrary) nonlinear functions

• Time-varying nonlinear systems are very general classes of dynamical systems{
ẋ(t) = f(t, x(t), u(t))

y(t) = g(t, x(t), u(t))

©2018 A. Bemporad - ``Identification, Analysis and Control of Dynamical Systems'' 15/144



Stability



Equilibrium

• Consider the continuous-time nonlinear system{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

Definition

A state xr ∈ Rn and an input ur ∈ Rm are an equilibrium pair if for initial

conditionx(0) = xr and constant inputu(t) ≡ ur the state remains constant:

x(t) ≡ xr , ∀t ≥ 0.

• Equivalent definition: (xr, ur) is an equilibrium pair if f(xr, ur) = 0

• xr is called equilibrium state, ur equilibrium input

• The definition generalizes to time-varying nonlinear systems
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Stability
• Consider the nonlinear system{

ẋ(t) = f(x(t), ur)

y(t) = g(x(t), ur)

and let xr an equilibrium state, f(xr, ur) = 0

Definition

The equilibrium state xr is stable if for each initial conditions x(0) “close

enough” to xr , the corresponding trajectory x(t) remains near xr for all t ≥ 0.
a

aAnalytic definition: ∀ϵ > 0 ∃δ > 0 : ∥x(0)− xr∥ < δ⇒∥x(t)− xr∥ < ϵ, ∀t ≥ 0.

• The equilibrium point xris called asymptotically stable if it is stable and

x(t) → xr for t → ∞
• Otherwise, the equilibrium point xr is called unstable
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Stability of equilibria - Examples
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Stability of first-order linear systems
• Consider the first-order linear system

ẋ(t) = ax(t) + bu(t)

• xr = 0, ur = 0 is an equilibrium pair

• For u(t) ≡ 0, ∀t ≥ 0, the solution is

x(t) = eatx0

• The origin xr = 0 is

– unstable if a > 0

– stable if a ≤ 0

– asymptotically stable if a < 0
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Stability of continuous-time linear systems
Since the natural response of ẋ = Ax+Bu is x(t) = eAtx0, the stability

properties depend only onA. We can therefore talk about system stability of a

linear system (A,B,C,D)

Theorem

Let λ1, . . ., λm, m ≤ n be the eigenvalues of A ∈ Rn×n. The system ẋ =

Ax+Bu is

• asymptotically stable iffℜλi < 0, ∀i = 1, . . . ,m

• (marginally) stable ifℜλi ≤ 0, ∀i = 1, . . . ,m, and the eigenvalues

with null real part have equal algebraic and geometric multiplicity

• unstable if ∃ i such thatℜλi > 0.

The stability properties of a linear systemonly depend on the real part of

the eigenvalues of matrixA
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Stability of continuous-time linear systems
Proof:

• The natural response isx(t) = eAtx0 (eAt ≜ I+At+ A2t2

2 + . . . + Antn

n! + . . . )

• If matrixA is diagonalizable1 ,A = TΛT−1,

Λ =


λ1 0 ... 0
0 λ2 ... 0

...
...
. . .

...
0 0 ... λn

⇒ eAt = T


eλ1t 0 ... 0
0 eλ2t ... 0

...
...

. . .
...

0 0 ... eλnt

T−1

• Take any eigenvalue λ = a+ jb:

|eλt| = eat|ejbt| = eat

• A is always diagonalizable if algebraic multiplicity = geometric multiplicity

□
1If A is not diagonalizable, it can be transformed to Jordan form. In this case the natural response

x(t) contains modes tjeλt , j = 0, 1, . . . , alg. multiplicity - geom. multiplicity
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Linearization of nonlinear systems

• Consider the nonlinear system{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

• Let (xr, ur) be an equilibrium, f(xr, ur) = 0

• Objective: investigate the dynamic behaviour of the system for small

perturbations∆u(t) ≜ u(t)− ur and∆x(0) ≜ x(0)− xr .

• The evolution of∆x(t) ≜ x(t)− xr is given by

∆̇x(t) = ẋ(t)− ẋr = f(x(t), u(t))

= f(∆x(t) + xr,∆u(t) + ur)

≈ ∂f

∂x
(xr, ur)︸ ︷︷ ︸
A

∆x(t) +
∂f

∂u
(xr, ur)︸ ︷︷ ︸
B

∆u(t)
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Linearization of nonlinear systems

• Similarly

∆y(t) ≈ ∂g

∂x
(xr, ur)︸ ︷︷ ︸
C

∆x(t) +
∂g

∂u
(xr, ur)︸ ︷︷ ︸
D

∆u(t)

where∆y(t) ≜ y(t)− g(xr, ur) is the perturbation of the output from its

equilibrium

• The perturbations∆x(t),∆y(t), and∆u(t) are (approximately) ruled by the

linearized system {
∆̇x(t) = A∆x(t) +B∆u(t)

∆y(t) = C∆x(t) +D∆u(t)
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Lyapunov's stability



Lyapunov's indirect method

• Consider the nonlinear system ẋ = f(x), with f differentiable, and assume

x = 0 is equilibrium point (f(0) = 0)

• Consider the linearized system ẋ = Ax, withA = ∂f
∂x

∣∣∣
x=0

• If ẋ = Ax is asymptotically stable, then the origin x = 0 is also an

asymptotically stable equilibrium for the nonlinear system (locally)

• If ẋ = Ax is unstable, then the origin x = 0 is an unstable equilibrium for the

nonlinear system

• IfA is marginally stable, nothing can be said about the stability of the origin

x = 0 for the nonlinear system

Aleksandr Mikhailovich Lyapunov
(1857-1918)
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Example: Pendulum

y(t)

l

m

u(t)=mg

h

y(t) = angular displacement

ẏ(t) = angular velocity

ÿ(t) = angular acceleration

u(t) =mg gravity force

hẏ(t) = viscous friction torque

l = pendulum length

ml2 = pendulum rotational inertia

• mathematical model

ml2ÿ(t) = −lmg sin y(t)− hẏ(t)

• in state-space form (x1 = y, x2 = ẏ){
ẋ1 = x2

ẋ2 = − g
l sinx1 −Hx2, H ≜ h

ml2
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Example: Pendulum

Look for equilibrium states:[
x2r

− g
l sinx1r −Hx2r

]
=

[
0

0

]
⇒

{
x2r = 0

x1r = ±kπ, k = 0, 1, . . .

l

m

u(t)=mg

h

x2r = 0, x1r = 0,±2π, . . .

l

m

u(t)=mg

h

x2r = 0, x1r = 0,±π,±3π, . . .
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Example: Pendulum
• Linearize the system around x1r = 0, x2r = 0

∆ẋ(t) =

[
0 1

− g
l −H

]
︸ ︷︷ ︸

A

∆x(t)

• find the eigenvalues ofA

det(λI −A) = λ2 +Hλ+
g

l
= 0 ⇒ λ1,2 =

1

2

(
−H ±

√
H2 − 4

g

l

)

• ℜλ1,2 < 0⇒ ẋ = Ax asymptotically

stable

• by Lyapunov’s indirect method

xr = [ 00 ] is also an asymptotically

stable equilibrium for the pendulum
0 2 4 6 8 10

−1.5
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−0.5

0

0.5

1

1.5
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t
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Example: Pendulum
• Linearize the system around x1r = π, x2r = 0

∆ẋ(t) =

[
0 1
g
l −H

]
︸ ︷︷ ︸

A

∆x(t)

• find the eigenvalues ofA

det(λI −A) = λ2 +Hλ− g

l
= 0 ⇒ λ1,2 =

1

2

(
−H ±

√
H2 + 4

g

l

)

• λ1 < 0, λ2 > 0⇒ ẋ = Ax unstable

• by Lyapunov’s indirect method

xr = [ 00 ] is also an unstable

equilibrium for the pendulum
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1

2

3
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Lyapunov's direct method

• A secondmethod exists to analyze global stability of nonlinear systems, based

on the concept of Lyapunov functions

• Key idea: if the energy of a system dissipates over time, the system

asymptotically reaches aminimum-energy configuration

• Assumptions: consider the autonomous nonlinear system ẋ = f(x), with f(·)
differentiable, and let x = 0 be an equilibrium (f(0) = 0)

• Some definitions of positive definiteness of a function V : Rn 7→ R
– V is called locally positive definite if V (0) = 0 and there exists a ball

Bϵ = {x : ∥x∥2 ≤ ϵ} around the origin such that V (x) > 0 ∀x ∈ Bϵ \ 0

– V is called globally positive definite ifBϵ = Rn (i.e. ϵ → ∞)

– V is called negative definite if−V is positive definite

– V is called positive semi-definite if V (x) ≥ 0 ∀x ∈ Bϵ, x ̸= 0

– V is called positive semi-negative if−V is positive semi-definite
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• Example: let x = [x1 x2]
′, V : R2 → R

– V (x) = x2
1 + x2

2 is globally positive definite

– V (x) = x2
1 + x2

2 − x3
1 is locally positive definite

– V (x) = x4
1 +sin2(x2) is locally positive definite and globally positive semi-definite
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Lyapunov's direct method
Theorem

Given the nonlinear system ẋ = f(x), f(0) = 0, let V : Rn 7→ R be positive

definite in a ballBϵ around the origin, ϵ > 0, V ∈ C1(R). If the function

V̇ (x) = ∇V (x)′ẋ = ∇V (x)′f(x)

is negative definite on Bϵ, then the origin is an asymptotically stable equilib-

riumpointwithdomainof attractionBϵ (limt→+∞ x(t) = 0 for allx(0) ∈ Bϵ).

If V̇ (x) is only negative semi-definite onBϵ, then the theorigin is a stable equi-

librium point.

Such a function V : Rn 7→ R is called a Lyapunov function for the system

ẋ = f(x)
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Example of Lyapunov's direct method

• Consider the following nonlinear system ẋ = f(x) given by{
ẋ1 = x1(x

2
1 + x2

2 − 2)− 4x1x
2
2

ẋ2 = 4x2
1x2 + x2(x

2
1 + x2

2 − 2)

• The state x = 0 is an equilibrium because ẋ = f(0) = 0

• Consider the candidate Lyapunov function

V (x1, x2) = x2
1 + x2

2

which is globally positive definite. Its time derivative V̇ is

V̇ (x1, x2) = 2(x2
1 + x2

2)(x
2
1 + x2

2 − 2)

• It is easy to check that V̇ (x1, x2) is negative definite if ∥x∥22 = x2
1 + x2

2 < 2

• Since for anyBϵ with 0 < ϵ <
√
2 the hypotheses of Lyapunov’s theorem are

satisfied, x = 0 is an asymptotically stable equilibrium

• AnyBϵ with 0 < ϵ <
√
2 is a domain of attraction
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Example of Lyapunov's direct method (cont'd)

• Cf. Lyapunov’s indirect method: the linearization around x = 0 is

∂f(0, 0)

∂x
=

[
3x2

1 − 3x2
2 − 2 −6x1x2

10x1x2 5x2
1 + 3x2

2 − 2

]∣∣∣∣∣
x=0

=

[
−2 0

0 −2

]

which is an asymptotically stable matrix

• Lyapunov’s indirect method tells us that the origin is locally asymptotically

stable

• Lyapunov’s direct method also tells us thatBϵ is a domain of attraction for all

0 < ϵ <
√
2

• Consider this other example: ẋ = −x3. The origin as an equilibrium. But
∂f(0,0)

∂x = −3 · 02 = 0, so Lyapunov indirect method is useless.

• Lyapunov’s direct methodwith V = x2 provides V̇ = −2x4, and therefore we

can conclude that x = 0 is (globally) asymptotically stable
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Case of continuous-time linear systems

• Let us apply Lyapunov’s direct method to linear systems ẋ = Ax and choose

V (x) = x′Px, withP = P ′ ≻ 0 (P=positive definite and symmetric matrix)

• The derivative V̇ (x) = ẋ′Px+ x′Pẋ = x′(A′P + PA)x

• V̇ (x) is negative definite if and only if the Lyapunov equation

A′P + PA = −Q

is satisfied for someQ ≻ 0 (for example,Q = I)
Theorem

The autonomous linear system ẋ = Ax is asymptotically stable⇔∀Q ≻ 0 the

Lyapunov equationA′P + PA = −Q has one and only one solutionP ≻ 0

MATLAB
»P=lyap(A’,Q)

←− Note the transposition of matrix A !
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Discrete-time systems



Discrete-time models
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u(kT
s
)

time t

Sampling of a continuous signal Discrete-time signal

• Discrete-timemodels describe relationships between sampled variables

x(kTs), u(kTs), y(kTs), k = 0, 1, . . .

• The value u(kTs) is kept constant during the sampling interval [kTs, (k + 1)Ts)

• A discrete-time signal can either represent the sampling of a continuous-time

signal, or be an intrinsically discrete signal

• Discrete-time signals are at the basis of digital controllers (as well as of digital

filters in signal processing)
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Difference equation
• Consider the first order difference equation (autonomous system){

x(k + 1) = ax(k)

x(0) = x0

• The solution is x(k) = akx0

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

x
(k

)

k

a>1

a=1

0<a<1
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Linear discrete-time system

• Consider the set of n first-order linear difference equations forced by the input

u(k) ∈ R

x1(k + 1) = a11x1(k) + . . . + a1nxn(k) +b1u(k)

x2(k + 1) = a21x1(k) + . . . + a2nxn(k) +b2u(k)
...

...
...

xn(k + 1) = an1x1(k) + . . . + annxn(k) +bnu(k)

x1(0) = x10, . . . xn(0) = xn0

• In compact matrix form:{
x(k + 1) = Ax(k) +Bu(k)

x(0) = x0

where x =

[
x1

...
xn

]
∈ Rn.
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Linear discrete-time system

• The solution is

x(k) = Akx0︸ ︷︷ ︸
natural response

+

k−1∑
i=0

AiBu(k − 1− i)︸ ︷︷ ︸
forced response

• If matrixA is diagonalizable,A = TΛT−1

Λ =

 λ1 0 ... 0
0 λ2 ... 0

...
...
. . .

...
0 0 ... λn

⇒ Ak = T


λk
1 0 ... 0

0 λk
2 ... 0

...
...
. . .

...
0 0 ... λk

n

T−1

where T = [v1 . . . vn] collects n independent eigenvectors.
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Example - Wealth of a bank account

• k= year counter

• ρ= interest rate

• x(k)=wealth at the beginning of year k

• u(k)=money saved at the end of year k

• x0= initial wealth in bank account

Discrete-timemodel:
{

x(k + 1) = (1 + ρ)x(k) + u(k)

x(0) = x0

x0 10 ke
u(k) 5 ke
ρ 10 %

x(k) = (1.1)k·10+1− (1.1)k

1− 1.1
5 = 60(1.1)k−50

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Example - Supply chain

y(k)u(k)

x1(k) x2(k) x3(k)

S P R

!1x1(k)

"1x1(k)

!2x2(k)

"2x2(k)

#3x3(k) $3x3(k)

• Problem statement:

– At eachmonth k,S purchases the quantity u(k) of rawmaterial

– A fraction δ1 of rawmaterial is discarded, a fractionα1 is shipped to producerP

– A fractionα2 of product is sold byP to retailerR, a fraction δ2 is discarded

– RetailerR returns a fraction β3 of defective products everymonth and sells a

fraction γ3 to customers

• Mathematical model:

x1(k + 1) = (1− α1 − δ1)x1(k) + u(k)

x2(k + 1) = α1x1(k) + (1− α2 − δ2)x2(k)

+β3x3(k)

x3(k + 1) = α2x2(k) + (1− β3 − γ3)x3(k)

y(k) = γ3x3(k)

k month counter
x1(k) raw material in S

x2(k) products in P

x3(k) products in R

y(k) products sold to customers
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Example - Student population dynamics
• Problem statement:

– 3-years course

– percentage of promoted, repeaters, and dropouts are roughly constant

– direct enrollment in 2nd and 3rd academic year is not allowed

– students cannot enroll for more than 3 years

• Notation:
k Year

xi(k) Number of students enrolled in year i at year k, i = 1, 2, 3

u(k) Number of freshmen at year k
y(k) Number of graduates at year k
αi promotion rate during year i, 0 ≤ αi ≤ 1

βi failure rate during year i, 0 ≤ βi ≤ 1

γi dropout rate during year i, γi = 1− αi − βi ≥ 0

• 3rd-order linear discrete-time system:
x1(k + 1) = β1x1(k) + u(k)

x2(k + 1) = α1x1(k) + β2x2(k)

x3(k + 1) = α2x2(k) + β3x3(k)

y(k) = α3x3(k)
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Example - Student population dynamics

• Inmatrix form
x(k + 1) =

 β1 0 0

α1 β2 0

0 α2 β3

x(k) +

 1

0

0

u(k)

y(k) =
[
0 0 α3

]
x(k)

• Simulation

α1 = .60 β1 = .20
α2 = .80 β2 = .15
α3 = .90 β3 = .08

u(k) ≡ 50, k = 2012, . . .
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nth-order difference equation
• Consider the nth-order difference equation forced by u

any(k − n) + an−1y(k − n+ 1) + · · ·+ a1y(k − 1) + y(k)

= bnu(k − n) + · · ·+ b1u(k − 1) + b0u(k)

• Equivalent linear discrete-time system in canonical statematrix form
x(k + 1) =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...

0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1

x(k) +



0

0

...

0

1

u(k)

y(k) =
[
(bn − b0an) . . . (b1 − b0a1)

]
x(k) + b0u(k)

• There are infinitely many state-space realizations
MATLAB
tf2ss

• nth-order difference equations are very useful for digital filters, digital

controllers, and to reconstruct models from data (system identification)
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Modal response

• Assume input u(k) = 0, ∀k ≥ 0

• AssumeA is diagonalizable,A = TΛT−1

• The state trajectory (natural response) is

x(k) = Akx0 = TΛkT−1x0 =

n∑
i=1

αiλ
k
i vi

where

– λi = eigenvalues ofA

– vi = eigenvectors ofA

– αi = coefficients that depend on the initial condition x(0)

α =

[ α1

...
αn

]
= T−1x(0), T = [v1 . . . vn]

• The systemmodes depend on the eigenvalues ofA, as in continuous-time
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Discrete-time linear system
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

x(0) = x0

• From a given initial condition x(0) and input sequence {u(k)}∞k=0one can

predict the entire sequence of states x(k) and outputs y(k), ∀k ∈ N
• The state x(0) summarizes all the past history of the system

• The dimension n of the state x(k) ∈ Rn is called the order of the system

• The system is called proper (or strictly causal) ifD = 0

• General multivariable case:

x(k) ∈ Rn

u(k) ∈ Rm

y(k) ∈ Rp

A ∈ Rn×n

B ∈ Rn×m

C ∈ Rp×n

D ∈ Rp×m
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Equilibrium

• Consider the discrete-time nonlinear system{
x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

Definition

A state xr ∈ Rn and an input ur ∈ Rm are an equilibrium pair if for initial

condition x(0) = xr and constant input u(k) ≡ ur , ∀k ∈ N, the state remains
constant: x(k) ≡ xr , ∀k ∈ N.

• Equivalent definition: (xr, ur) is an equilibrium pair if f(xr, ur) = xr

• xr is called equilibrium state, ur equilibrium input

• The definition generalizes to time-varying discrete-time nonlinear systems
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Stability
• Consider the nonlinear system{

x(k + 1) = f(x(k), ur)

y(k) = g(x(k), ur)

and let xr an equilibrium state, f(xr, ur) = xr

Definition

The equilibrium state xr is stable if for each initial conditions x(0) “close

enough” toxr , thecorresponding trajectoryx(k) remainsnearxr forallk ∈ N.
a

aAnalytic definition: ∀ϵ > 0 ∃δ > 0 : ∥x(0)− xr∥ < δ⇒∥x(k)− xr∥ < ϵ, ∀k ∈ N.

• The equilibrium point xr is called asymptotically stable if it is stable and

x(k) → xr for k → ∞
• Otherwise, the equilibrium point xr is called unstable
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Stability of first-order linear systems
• Consider the first-order linear system

x(k + 1) = ax(k) + bu(k)

• xr = 0, ur = 0 is an equilibrium pair

• For u(k) ≡ 0, ∀k = 0, 1, . . ., the solution is

x(k) = akx0

• The origin xr = 0 is

– unstable if |a| > 1

– stable if |a| ≤ 1

– asymptotically stable if |a| < 1
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Stability of discrete-time linear systems
The natural response of x(k+1) = Ax(k) +Bu(k) is x(k) = Akx0, so stability

only depend onA. We therefore talk about system stability

Theorem

Letλ1, . . .,λm,m ≤ nbe theeigenvaluesofA ∈ Rn×n. The systemx(k+1) =

Ax(k) +Bu(k) is

• asymptotically stable iff |λi| < 1, ∀i = 1, . . . ,m

• (marginally) stable if |λi| ≤ 1, ∀i = 1, . . . ,m, and the eigenvalues with

unit modulus have equal algebraic and geometric multiplicity a

• unstable if ∃ i such that |λi| > 1

aAlgebraic multiplicity ofλi = number of coincident rootsλi of det(λI −A). Geometric

multiplicity ofλi = number of linearly independent eigenvectors vi ,Avi = λivi

The stability properties of a discrete-time linear system only de-

pend on themodulus of the eigenvalues of matrixA

©2018 A. Bemporad - ``Identification, Analysis and Control of Dynamical Systems'' 49/144



Stability of discrete-time linear systems

Proof:

• The natural response is x(k) = Akx0

• If matrixA is diagonalizable2 ,A = TΛT−1,

Λ =


λ1 0 ... 0
0 λ2 ... 0

...
...
. . .

...
0 0 ... λn

⇒ Ak = T


λk
1 0 ... 0

0 λk
2 ... 0

...
...
. . .

...
0 0 ... λk

n

T−1

• Take any eigenvalue λ = ρejθ :

|λk| = ρk|ejkθ| = ρk

• A is always diagonalizable if algebraic multiplicity - geometric multiplicity

□
2If A is not diagonalizable, it can be transformed to Jordan form. In this case the natural response

x(t) contains modes kjλk , j = 0, 1, . . . , alg. multiplicity = geom. multiplicity
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Zero eigenvalues

• Modes λi=0 determine finite-time convergence to zero.

• This has no continuous-time counterpart, where instead all convergingmodes

tend to zero in infinite time (eλit)

• Example: dynamics of a buffer

y(k)
u(k)

x2(k) x1(k)x3(k)


x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

x3(k + 1) = u(k)

y(k) = x1(k)


x(k + 1) =

 0 1 0

0 0 1

0 0 0

x(k) +

 0

0

1

u(k)

y(k) =
[
1 0 0

]
x(k)

• Natural response: A3x(0) = 0 for all x(0) ∈ R3

• For u(k) ≡ 0, the buffer deploys after at most 3 steps !
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Exact sampling
• Consider the continuos-time system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

x(0) = x0

• Wewant to characterize the value of x(t), y(t) at the time instants

t = 0, Ts, 2Ts, . . . , kTs, . . ., under the assumption that the input u(t) is

constant during each sampling interval (zero-order hold, ZOH)

u(t) = ū(k), kTs ≤ t < (k + 1)Ts

• x̄(k) ≜ x(kTs) and ȳ(k) ≜ y(kTs) are the state

and the output samples at the kth sampling

instant, respectively
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Exact sampling
• Using Lagrange formula, The response of the continuous-time system between

t0 = kTs and t = (k + 1)Ts from x(t0) = x(kTs) is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−σ)Bu(σ)dσ

= eA((k+1)Ts−kTs)x(kTs) +

∫ (k+1)Ts

kTs

eA((k+1)Ts−σ)Bu(σ)dσ

• Since the input u(t) is piecewise constant, u(σ) ≡ ū(k), kTs ≤ σ < (k + 1)Ts.

By setting τ = σ − kTs we get

x((k + 1)Ts) = eATsx(kTs) +

(∫ Ts

0

eA(Ts−τ)dτ

)
Bu(kTs)

and hence

x̄(k + 1) = eATs x̄(k) +

(∫ Ts

0

eA(Ts−τ)dτ

)
Bū(k)

which is a linear difference relation between x̄(k) and ū(k) !
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Exact sampling
• The discrete-time system{

x̄(k + 1) = Āx̄(k) + B̄ū(k)

ȳ(k) = C̄x̄(k) + D̄ū(k)

depends on the original continuous-time system through the relations

Ā ≜ eATs , B̄ ≜
(∫ Ts

0

eA(Ts−τ)dτ

)
B, C̄ ≜ C, D̄ ≜ D

• If u(t) is piecewise constant, (Ā, B̄, C̄, D̄) provides the exact evolution of state

and output samples at discrete times kTs

MATLAB
sys=ss(A,B,C,D);
sysd=c2d(sys,Ts);
[Ab,Bb,Cb,Db]=ssdata(sysd);
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Choice of sampling time

Rule of thumb: Ts ≈ 1
10 of rise time = time to move from 10% to

90% of the steady-state value, for input u(t) ≡ 1, x(0) = 0
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Euler's forward method

ẋ(kTs) ≈
x((k + 1)Ts)− x(kTs)

Ts

_x(t)

x((k+1)T )¡x(kT )
T

x((k+1)T )

x(kT )

t
kT (k+1)T

x(t)

T

x((k + 1)Ts)

x(kTs)

(k + 1)TskTs

ẋ(kTs)

x((k + 1)Ts)− x(kTs)

Ts

Ts

Leonhard Paul Euler
(1707-1783)

• For nonlinear systems ẋ(t) = f(x(t), u(t)):

x̄(k + 1) = x̄(k) + Tsf(x̄(k), ū(k))

• For linear systems ẋ(t) = Ax(t) +Bu(t):

x((k + 1)Ts) = (I + TsA)x(kTs) + TsBu(kTs)

Ā ≜ I +ATs, B̄ ≜ TsB, C̄ ≜ C, D̄ ≜ D

• eTsA = I + TsA+ . . .+
Tn
s An

n!
+ . . . Euler’s method≈ exact sampling for Ts → 0
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Example - Hydraulic system
Continuous-timemodel{

d
dth(t) = −a

√
2g

A

√
h(t) + 1

Au(t)

q(t) = a
√
2g
√
h(t)

Discrete-timemodel{
h̄(k + 1) = h̄(k)− Tsa

√
2g

A

√
h̄(k) + Ts

A ū(k)

q̄(k) = a
√
2g
√
h̄(k)

h

u

q
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Euler approximation
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Euler approximation
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N -steps Euler method

• We can obtain thematricesA,B of the discrete-time linearizedmodel while

integrating the nonlinear continuous-time dynamic equations ẋ = f(x, u)

• N -steps explicit forward Eulermethod: given x(k), u(k), execute the following
steps

1. x = x(k),A = I ,B = 0
2. forn=1:N do

• A← (I + Ts
N

∂f
∂x

(x, u(k))A

• B ← (I + Ts
N

∂f
∂x

(x, u(k))B + Ts
N

∂f
∂u

(x, u(k))A

• x← x+ Ts
N

f(x, u(k))

3. end

4. return x(k + 1) ≈ x andmatricesA,B such that x(k + 1) ≈ Ax(k) +Bu(k).

• Property: the difference between the state x(k + 1) and its approximation x

computed by the above iterations satisfies ∥x(k + 1)− x)∥ = O
(
Ts

N

)
• Explicit forward Runge-Kutta 4method also available
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Tustin's discretization method

• Assume u(k) constant within the sampling interval. Given the linear system
ẋ = Ax+Bu, apply the trapezoidal rule to approximate the integral

x(k + 1)− x(k) =

∫ (k+1)Ts

kTs

ẋ(t)dt =

∫ (k+1)Ts

kTs

(Ax(t) +Bu(t))dt

≈ Ts

2
(Ax(k) +Bu(k) +Ax(k + 1) +Bu(k)) (trapezoidal rule)

and therefore

(I − Ts

2
A)x(k + 1) = (I +

Ts

2
)x(k) + TsBu(k)

x(k + 1) =

(
I − Ts

2
A

)−1(
I +

Ts

2
A

)
x(k) +

(
I − Ts

2
A

)−1

TsBu(k)

• Advantage: simpler to compute than exponential matrix, without toomuch loss

of approximation quality
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Z-transform

Consider a function f(k), f : Z → R, f(k) = 0 for all k < 0

Definition

The unilateral Z-transform of f(k) is the function of

the complex variable z ∈ C defined by

F (z) =

∞∑
k=0

f(k)z−k

−2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f(
k)

k

Witold Hurewicz
(1904-1956)

OnceF (z) is computed using the series, it’s

extended to all z ∈ C for whichF (z)makes sense

Z-transforms convert difference equations into

algebraic equations.
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Examples of Z-transforms

• Discrete impulse

f(k) = δ(k) ≜
{

0 if k ̸= 0

1 if k = 0
⇒ Z[δ] = F (z) = 1

• Discrete step

f(k) = 1I(k) ≜
{

0 if k < 0

1 if k ≥ 0
⇒ Z[1I] = F (z) =

z

z − 1

• Geometric sequence

f(k) = ak 1I(k) ⇒ Z[f ] = F (z) =
z

z − a
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Properties of Z-transforms

• Linearity

Z[k1f1(k) + k2f2(k)] = k1Z[f1(k)] + k2Z[f2(k)]

Example: f(k) = 3δ(k)− 5
2k

1I(t)⇒Z[f ] = 3− 5z
z− 1

2

• Forward shift3

Z[f(k + 1) 1I(k)] = zZ[f ]− zf(0)

Example: f(k) = ak+1 1I(k)⇒Z[f ] = z z
z−a − z = az

z−a

3z is also called forward shift operator
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Properties of Z-transforms

• Backward shift or unit delay 4

Z[f(k − 1) 1I(k)] = z−1Z[f ]

Example: f(k) = 1I(k − 1)⇒Z[f ] = z
z(z−1)

• Multiplication by k

Z[kf(k)] = −z
d

dz
Z[f ]

Example: f(k) = k 1I(k)⇒Z[f ] = z
(z−1)2

4z−1 is also called backward shift operator
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Discrete-time transfer function
Apply forward-shift & linearity rules to x(k + 1) = Ax(k) +Bu(k), and

linearity to y(k) = Cx(k) +Du(k):

X(z) = z(zI −A)−1x0 + (zI −A)−1BU(z)

Y (z) = zC(zI −A)−1x0︸ ︷︷ ︸
Z-transform of natural response

+(C(zI −A)−1B +D)U(z)︸ ︷︷ ︸
Z-transform of forced response

Definition

The transfer function of the discrete-time linear system (A,B,C,D) is

G(z) = C(zI −A)−1B +D

that is the ration between the Z-transform Y (z) of the output and the Z-

transformU(z) of the input signals for the initial state x0 = 0

MATLAB
»sys=ss(A,B,C,D,Ts); »G=tf(sys)
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Discrete-time transfer function

A;B;C;D G(z)
u(k) y(k) U(z) Y (z)

x0 = 0

Example: The linear system x(k + 1) =

[
0.5 1

0 −0.5

]
x(k) +

[
0

1

]
u(k)

y(k) =
[
1 −1

]
x(k)

with sampling time Ts = 0.1 s has the transfer function

G(z) =
−z + 1.5

z2 − 0.25

Note: Even for discrete-time systems, the transfer

function does not depend on the input u(k). It’s only a

property of the linear system

MATLAB
sys=ss([0.5 1;
0 -0.5],[0;1],[1 -1],0,0.1);
G=tf(sys)

Transfer function:
-z + 1.5
—————
sˆ2 - 0.25
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Difference equations

• Consider the nth-order difference equation forced by u

any(k − n) + an−1y(k − n+ 1) + · · ·+ a1y(k − 1) + y(k)

= bnu(k − n) + · · ·+ b1u(k − 1)

• For zero initial conditions we get the transfer function

G(z) =
bnz
−n + bn−1z

−n+1 + · · ·+ b1z
−1

anz−n + an−1z−n+1 + · · ·+ a1z−1 + 1

=
b1z

n−1 + · · ·+ bn−1z + bn
zn + a1zn−1 + · · ·+ an−1z + an
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Impulse response

• Consider the impulsive input u(k) = δ(k),U(z) = 1. The corresponding output

y(k) is called impulse response

• The Z-transform of y(k) is Y (z) = G(z) · 1 = G(z)

• Therefore the impulse response coincides with the inverse Z-transform g(k) of

the transfer functionG(z)

Example (integrator:)

u(k) = δ(k)

y(k) = Z−1
[

1
z−1

]
= 1I(k − 1)

−2 0 2 4 6 8 10
−2

−1

0

1

2

u
(k

)

k
−2 0 2 4 6 8 10

−2

−1

0

1

2

y
(k

)

k

©2018 A. Bemporad - ``Identification, Analysis and Control of Dynamical Systems'' 67/144



Poles, eigenvalues, modes

• Linear discrete-time system{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

x(0) = 0

G(z) = C(zI−A)−1B+D ≜ NG(z)

DG(z)

• Use the adjugatematrix to represent the inverse of zI −A

C(zI −A)−1B +D =
C Adj(zI −A)B

det(zI −A)
+D

• The denominatorDG(z) = det(zI −A) !

The poles ofG(z) coincide with the eigenvalues ofA

• Well, not always ... (as in continuous time)
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Steady-state solution and DC gain
• LetA asymptotically stable (|λi| < 1). The natural response vanishes

asymptotically

• Assume constant u(k) ≡ ur , ∀k ∈ N. What is the asymptotic value

xr = limk→∞ x(k) ?

Impose xr(k + 1) = xr(k) = Axr +Bur and get xr = (I −A)−1Bur

The corresponding steady-state output yr = Cxr +Dur is

yr = (C(I −A)−1B +D)︸ ︷︷ ︸
DC gain

ur

• Cf. final value theorem:

yr = lim
k→+∞

y(k) = lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)G(z)U(z)

= lim
z→1

(z − 1)G(z)
urz

z − 1
= G(1)ur = (C(I −A)−1B +D)ur

• G(1) is called theDC gain of the system
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Example - Student population dynamics
• Recall student population dynamics

x(k + 1) =

 .2 0 0

.6 .15 0

0 .8 .08

x(k) +

 1

0

0

u(k)

y(k) =
[
0 0 .9

]
x(k)

• DC gain:

[ 0 0 .9 ]
([

1 0 0
0 1 0
0 0 1

]
−
[
.2 0 0
.6 .15 0
0 .8 .08

])−1 [ 1
0
0

]
≈ 0.69

• Transfer function: G(z) = 0.432
z3−0.43z2+0.058z−0.0024 ,G(1) ≈ 0.69

2006 2008 2010 2012 2014 2016
0

5

10

15

20

25

30

35
y(k)

step k

MATLAB
»A=[b1 0 0; a1 b2 0; 0 a2 b3];
»B=[1;0;0];
»C=[0 0 a3];
»D=[0];
»sys=ss(A,B,C,D,1);
»dcgain(sys)

ans =

0.6905

• For u(k) ≡ 50 students enrolled steadily, y(k) → 0.69 · 50 ≈ 34.5 graduate
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Closed-loop control



Proportional integral derivative (PID) controllers

• PID (proportional integrative derivative) controllers are themost used

controllers in industrial automation since the ’30s

u(t) = Kp

[
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

]
where e(t) = r(t)− y(t) is the tracking error

• Initially constructed by analog electronic components, today they are
implemented digitally

– ad hoc digital devices

– just few lines of C code included in the control unit
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PID parameters

Process
+
-
e

Kp
+
+
+ u yr

1

Ti

Z t

0
e(⌧)d⌧

Td
de(t)

dt Controller

• Kp is the controller gain, determining the “aggressiveness” of the controller

• Ti is the reset time, determining the weight of the integral action. The integral

action guarantees that in steady-state y(t) = r(t)

• Td is the derivative time. The term e(t) + Td
de(t)
dt provides a “prediction” of the

tracking error at time t+ Td

• We call the controller P, PD, PI, or PID depending on the feedback terms

included in the control law
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Structure of PID controller

• In practice one implements the following version of the PID controller

u(t) = Kp

[
br(t)− y(t)︸ ︷︷ ︸
proportional

action

+
1

sTi

∫ t

0

(r(τ)− y(τ))dτ︸ ︷︷ ︸
integral
action

+ d(t)︸︷︷︸
derivative
action

]

d(t) +
Td

N
ḋ(t) = −Tdẏ(t)

• the reference signal r(t) is not included in the derivative term (r(t)may have

abrupt changes)

• the proportional actionKp(br(t)− y(t) only uses a fraction b ≤ 1 of the

reference signal r(t)

• the derivative term d(t) is a filtered version of ẏ(t)
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Digital implementation of PID controller

• In digital (=discrete-time) formwith sampling time Ts, the PID controller takes

the following form

u(k) = P (k) + I(k) +D(k)

P (k) = Kp(br(k)− y(k))

I(k + 1) = I(k) +
KpTs

Ti
(r(k)− y(k)) forward differences

D(k) =
Td

Td +NTs
D(k − 1)− KpTdN

Td +NTs
(y(k)− y(k − 1))

backward differences
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PID controller: pros and cons

• Very simple to implement, only 3 parameters to calibrate

• It only requires themeasurement of the output signal y(t)

• The control law does not exploit the knowledge of themodel of the process

• Achievable closed-loop performance is limited
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State-feedback control



Reachability analysis

• Consider the linear discrete-time system

x(k + 1) = Ax(k) +Bu(k)

with x ∈ Rn, u ∈ Rm and initial condition x(0) = x0 ∈ Rn

• The solution is x(k) = Akx0 +

k−1∑
j=0

AjBu(k − 1− j)

Definition

The systemx(k+1) = Ax(k)+Bu(k) is (completely) reachable if ∀x1, x2 ∈
Rn there exist k ∈ N and u(0), u(1), . . ., u(k − 1) ∈ Rm such that

x2 = Akx1 +

k−1∑
j=0

AjBu(k − 1− j)

• In simple words: a system is completely reachable if from any state x1 we can

reach any state x2 at some time k, by applying a suitable input sequence
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Reachability

• Determine a sequence of n inputs transferring the state vector from x1 to x2

after n steps

x2 −Anx1︸ ︷︷ ︸
X

=
[
B AB . . . An−1B

]︸ ︷︷ ︸
R


u(n− 1)

u(n− 2)
...

u(0)


︸ ︷︷ ︸

U

• This is equivalent to solve with respect toU the linear system of equations

RU = X

• MatrixR ∈ Rn×nm is called the reachability matrix of the system

• A solutionU exists if and only ifX ∈ Im(R)

(Rouché-Capelli theorem: a solution exists⇔ rank([RX]) = rank(R))
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Reachability
Theorem

The system (A,B) is completely reachable⇔ rank(R) = n

Proof:

(⇒) Assume (A,B) reachable, choose x1 = 0 and x2 = x. Then ∃k ≥ 0 such

that

x =

k−1∑
j=0

AjBu(k − 1− j)

If k ≤ n, then clearly x ∈ Im(R). If k > n, by Cayley-Hamilton theoremwe

have again x ∈ Im(R). Since x is arbitrary, Im(R) = Rn, so rank(R) = n.

(⇐) If rank(R) = n, then Im(R) = Rn. LetX = x2 −Anx1 and

U = [ u(n− 1)′ . . . u(1)′ u(0)′]
′. The systemX = RU can be solvedwith

respect toU , ∀X , so any state x1 can be transferred to x2 in k = n steps.

Therefore, the system (A,B) is completely reachable.
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Minimum-energy control
• Let (A,B) reachable and consider steering the state from x(0) = x1 into

x(k) = x2, k > n

x2 −Akx1︸ ︷︷ ︸
X

=
[
B AB . . . Ak−1B

]
︸ ︷︷ ︸

Rk


u(k − 1)

u(k − 2)
...

u(0)


︸ ︷︷ ︸

U

(Rk ∈ Rn×km is the reachability matrix for k steps)

• Since rank(Rk) = rank(R) = n, ∀k > n (Cayley-Hamilton), we get

rankRk = rank[Rk X] = n

• Hence the systemX = RkU admits solutionsU

Problem

Determine the input sequence{u(j)}k−1j=0 thatbrings the state fromx(0) = x1

to x(k) = x2 withminimum energy
1

2

k−1∑
j=0

∥u(j)∥2 =
1

2
U ′U
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Minimum-energy control

• The problem is equivalent to finding the solutionU of the system of equations

X = RkU

withminimum norm ∥U∥
• Wemust solve the optimization problem

U∗ = arg min
1

2
∥U∥2 subject to X = RkU

• Let’s apply themethod of Lagrangemultipliers:

L(U, λ) = 1

2
∥U∥2 + λ′(X −RkU) Lagrangian function

∂L
∂U = U −R′kλ = 0

∂L
∂λ = X −RkU = 0

⇒ U∗ = R′k(RkR
′
k)
−1︸ ︷︷ ︸

R#
k = pseudoinverse matrix

·X MATLAB
U=pinv(Rk)*X

• Note thatRkR
′
k is invertible because rank(Rk) = rank(R) = n, ∀k ≥ n
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Controllability

• If the system is completely reachable, we have seen that we can bring the state

vector from any value x(0) = x1 to any other value x(n) = x2

• Let’s focus on the subproblem of determining a finite sequence of inputs that

brings the state to the final value x(n) = 0

Definition

A system x(k + 1) = Ax(k) + Bu(k) is controllable to the origin in k steps

if ∀x0 ∈ Rn there exists a sequence u(0), u(1), . . ., u(k − 1) ∈ Rm such that

0 = Akx0 +
∑k−1

j=0 A
jBu(k − 1− j)

• Controllability is a weaker condition than reachability
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Controllability, Stabilizability
• The linear system of equations

−Anx0 =
[
B AB . . . An−1B

]︸ ︷︷ ︸
R


u(k − 1)

u(k − 2)
...

u(0)


admits a solution if and only ifAnx0 ∈ Im(R), ∀x0 ∈ Rn

Theorem

The system is controllable to the origin (in n steps) if and only if

Im(An) ⊆ Im(R)

Definition

A linear system x(k + 1) = Ax(k) + Bu(k) is called stabilizable if can be

driven asymptotically to the origin

• Stabilizability is a weaker condition than controllability
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Reachability analysis of continuous-time systems

• Similar definitions of reachability, controllability, and stabilizability can be given

for continuous-time systems

ẋ(t) = Ax(t) +Bu(t)

• No distinction between controllability and reachability in continuous-time

(because no finite-time convergence of modal response exists)

• Reachability matrix and canonical reachability decomposition are identical to

discrete-time

• rankR = n is also a necessary and sufficient condition for reachability

• Auc asymptotically stable (all eigenvalues with negative real part) is also a

necessary and sufficient condition for stabilizability
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Stabilization by state feedback
• Main idea: design a device that makes the process (A,B,C) asymptotically

stable bymanipulating the input u to the process

v(k) x(k) y(k)
A,B

u(k)
C

K

!"#$%&'$()*+,'-..

state feedback

+

+

• If measurements of the state vector are available, we can set

u(k) = k1x1(k) + k2x2(k) + . . .+ knxn(k) + v(k)

• v(k) is an exogenous signal exciting the closed-loop system

Problem

Find a feedback gainK = [k1 k2 . . . kn] that makes the closed-loop system

asymptotically stable.
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Stabilization by state feedback

v(k) x(k) y(k)
A,B

u(k)
C

K
!"#$%&'"##()$*$+%,

+

+

• Let u(k) = Kx(k) + v(k). The overall system is

x(k + 1) = (A+BK)x(k) +Bv(k)

y(k) = (C +DK)x(k) +Dv(k)

Theorem

(A,B) ”reachable” (rank
[
B AB . . . An−1B

]
= n) ⇒ the eigenvalues of

(A+BK) can be decided arbitrarily.
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Eigenvalue assignment problem
Fact

(A,B) reachable⇔ (A,B) is algebraically equivalent to a pair (Ã, B̃) in con-
trollable canonical form

Ã =


0

...

0

In−1

−a0 −a1 . . . −an−1

, B̃ =


0

...

0

1


The transformationmatrix T such that Ã = T−1AT , B̃ = T−1B is

T = [BAB . . . An−1B]



a1 a2 . . . an−1 1

a2 a3 . . . 1 0

...
...

...
...

...

an−1 1 0 . . . 0

1 0 0 . . . 0


where a1, a2, . . ., an−1 are the coefficients of the characteristic polynomial

pA(λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 = det(λI −A)
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• Let (A,B) reachable and assumem = 1 (single input)

• Characteristic polynomials:

pA(λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 (open­loop eigenvalues)

pd(λ) = λn + dn−1λ
n−1 + . . .+ d1λ+ d0 (desired closed­loop eigenvalues)

• Let (A,B) be in controllable canonical form

A =


0

...

0

In−1

−a0 −a1 . . . −an−1

 , B =


0

...

0

1


• AsK = [k1 . . . kn], we have

A+BK =


0

...

0

In−1

−(a0 − k1) −(a1 − k2) . . . −(an−1 − kn)


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• The characteristic polynomial ofA+BK is therefore

λn + (an−1 − kn)λ
n−1 + . . .+ (a1 − k2)λ+ (a0 − k1)

• Tomatch pd(λ)we impose

a0 − k1 = d0 , a1 − k2 = d1 , . . . , an−1 − kn = dn−1

Procedure

If (A,B) is in controllable canonical form, the feedback gain

K =
[
a0 − d0 a1 − d1 . . . an−1 − dn−1

]
makes pd(λ) the characteristic polynomial of (A+BK)
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• If (A,B) is not in controllable canonical formwemust set

K̃ =
[
a0−d0 a1−d1 . . . an−1−dn−1

]
K = K̃T−1 ← don’t invert T , solve instead T ′K ′ = K̃ ′ w.r.t. K ′ !

where

T = R


a1 a2 . . . an−1 1

a2 a3 . . . 1 0

...
...

...
...

...

an−1 1 0 . . . 0

1 0 0 . . . 0


• Explanation: a matrixM and T−1MT have the same eigenvalues

det(λI − T−1MT ) = det(T−1Tλ− T−1MT ) = det(T−1) det(λI −M)

·det(T ) = det(λI −M)

• Since (Ã+ B̃K̃) = T−1AT + T−1BKT = T−1(A+BK)T , it follows that

(Ã+ B̃K̃) and (A+BK) have the same eigenvalues
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Ackermann's formula

• Let (A,B) reachable and assumem = 1 (single input)

• Characteristic polynomials:

pA(λ) = λn + an−1λ
n−1 + . . .+ a1λ+ a0 (open­loop eigenvalues)

pd(λ) = λn + dn−1λ
n−1 + . . .+ d1λ+ d0 (desired closed­loop eigenvalues)

• Let pd(A) = An + dn−1A
n−1 + . . .+ d1A+ d0I ← (This is n× n matrix !)

Ackermann’s formula

K = −[0 . . . 0 1][BAB . . . An−1B]−1pd(A)

MATLAB
K=-acker(A,B,P);
K=-place(A,B,P);

whereP = [λ1λ2 . . . λn] are the desired closed-loop poles
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Zeros of closed-loop system
Fact

The zeros of the system are the same under state feedback: NK(z) = N(z)

• Example for x ∈ R3: change the coordinates to canonical reachability form

A =

 0 1 0

0 0 1

−a3 −a2 −a1

 , B =

 0

0

1

 , K =
[
k3 k2 k1

]

• ComputeN(z)

Adj(zI −A)B =

 z2 + a1z + a2 z + a1 1

−a3 z(z + a1) z

−a3z −a2z − a3 z2


 0

0

1

 =

 1

z

z2


• Adj(zI −A)B does not depend on the coefficients a1, a2, a3. So also

Adj(zI −A−BK)B does not depends on a1 − k1, a2 − k2, a3 − k3

• N(z) = C Adj(zI −A)B = C Adj(zI −A−BK)B = NK(z), ∀K ′ ∈ Rn
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Example - Student population dynamics

• The open-loop poles are (0.8, 0.15, 0.2)

• Saywewant to place the closed-loop poles in (0.1± 0.4j, 0.1) by setting

u(k) = Kx(k) +Hr(k)

where r(k) is the desired reference signal

• First, designK by pole placement:
MATLAB
K=-place(A,B,[.1+.4*j,.1-.4*j,.1])

• Then chooseH such that the DC-gain from r to y is 1:
MATLAB
sys_cl=ss(A+B*K,B,C+D*K,D,1);
dc_cl=dcgain(sys_cl);
H=1/dc_cl;

• We getK = [−0.1300 − 0.2698 0.0067],H = 2.0208

©2018 A. Bemporad - ``Identification, Analysis and Control of Dynamical Systems'' 92/144



Example - Student population dynamics

• Compare open-loop vs. closed-loop response
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State estimation



Observability

x(k) y(k)
A,B

u(k)
C

?

!"#$%&'$()*+,'-..

x(k)ˆ ./$/-)-./&%$/-

• Implementing a state feedback controller u(k) = Kx(k) requires the entire

state vector x(k)

• Problem: often sensors only provide themeasurements of output y(k)

• Idea: is it possible to estimate the state x bymeasuring only the output y and

knowing the applied input u ?

• Observability analysis addresses this problem, telling us when and how the

state estimation problem can be solved
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Observability
• Consider

{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

with x ∈ Rn, u ∈ R, y ∈ R and initial condition x(0) = x0 ∈ Rn (5)

• The solution for the output is

y(k, x0, u(·)) = CAkx0 +

k−1∑
j=0

CAjBu(k − 1− j) +Du(k)

Definition

The pair of states x1 ̸= x2 ∈ Rn is called indistinguishable from the output

y(·) if for any input sequence u(·)

y(k, x1, u(·)) = y(k, x2, u(·)),∀k ≥ 0

A linear system is called (completely) observable if no pair of states are indis-

tinguishable from the output
5Everything here can be easily generalized tomultivariable systemsu ∈ Rm , y ∈ Rp
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Observability

• Consider the problem of reconstructing the initial condition x0 from n output

measurements, applying a known input sequence

y(0) = Cx0 +Du(0)

y(1) = CAx0 + CBu(0) +Du(1)
...

y(n− 1) = CAn−1x0 +
∑n−2

j=1 CAjBu(n− 2− j) +Du(n− 1)

• Define

Θ =


C

CA
...

CAn−1


︸ ︷︷ ︸

This is a n× n matrix

Y =


y(0)−Du(0)

y(1)− CBu(0)−Du(1)
...

y(n− 1)−
n−2∑
j=1

CAjBu(n− 2− j)−Du(n− 1)


︸ ︷︷ ︸

This is an n­th dimensional vector
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Observability

• The initial state x0 is determined by solving the linear system

Y = Θx0

ThematrixΘ ∈ Rn×n is called the observability matrix of the system

• If we assume perfect knowledge of the output (i.e., no noise on output
measurements), we can always solve the system Y = Θx0. In particular:

– There is only one solution if rank(Θ) = n

– There exist infinite solutions if rank(Θ) < n. In this case, all solutions are given by

x0 + ker(Θ), where x0 is any particular solution of the system

• Knowing x0, we know x(k) = Akx0 +
∑k−1

i=0 AiBu(k − 1− i) for all k ≥ 0
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Observability

• The system of equationsΘx0 = Y has a solution if and only if

rank(Θ) = rank([Θ Y ]) (Rouché-Capelli Theorem)

• Because we haveΘ ∈ Rn×n, if rank(Θ) = n⇒ rank([Θ Y ]) = n for each Y

• The solution is unique if and only if rank(Θ) = n

• Since the input u(k) influences only the known vector Y , the solvability of the

systemΘx0 = Y is independent from u(k)

• Then, for linear systems the observability property does not depend on the

input signal u(·), it only depends onmatrixΘ (i.e., onA andC)

• We can study the observability properties of the system for u(k) ≡ 0
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Observability
Theorem

A linear system is observable if and only if rank(Θ) = n

• As the observability property of a system depends only onmatricesA andC ,
we call a pair (A,C) observable if

rank




C

CA
...

CAn−1


 = n

• It can be proved that ker(Θ) is the set of states x ∈ Rn that are

indistinguishable from the origin

y(k, x, u(·)) = y(k, 0, u(·)), ∀k ≥ 0

for any input sequence u(·)
• Since ker(Θ) = {0} if and only if rank(Θ) = n, a system is observable if and

only if there are no states that are indistinguishable from the origin x = 0
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Reconstructability

• Under observability assumptions, we just saw that it is possible to determine

the initial condition x0 from n input/output measurements

x(0) = Θ−1Y

• To close the control loop at time k it is enough to know the current x(k)

• If the initial condition x(0) is known, it is possible to calculate x(k) as

x(k) = AkΘ−1Y +

k−1∑
i=0

AiBu(k − 1− i)

• Question: Canwe determine the current state x(k) even if the system is not

completely observable?
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Reconstructability

Definition

A linear systemx(k+1) = Ax(k)+Bu(k) is called reconstructable ink steps

if, for each initial conditionx0,x(k) is uniquely determined by {u(j), y(j)}k−1j=0

The solutions of the system

Yk ≜



y(0)−Du(0)

y(1)− CBu(0)−Du(1)
...

y(k − 1)−
k−2∑
j=1

CAjBu(k − 2− j) +Du(k − 1)


=


C

CA
...

CAk−1


︸ ︷︷ ︸

Θk

x

are given by x = x0 + ker(Θk), where x0 is the “true” (unknown) initial state
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Reconstructability

• Let x0 be the initial (unknown) “true” state, and x = x0 + x̄ be a generic initial

state, where x̄ ∈ ker(Θk). An estimation x̂(k) of the current state x(k) is

x̂(k) = Akx0 +Akx̄+

k−1∑
j=1

AjBu(k − 1− j)

• x̂(k) coincides with x(k) if and only if x̄ ∈ ker(Ak). Because this must hold for

any x̄ ∈ ker(Θk), we have the following

Lemma

A system is reconstructable in k steps if and only if ker(Θk) ⊆ ker(Ak)

Definition

A system is called detectable if it is reconstructable asymptotically for t →
+∞

©2018 A. Bemporad - ``Identification, Analysis and Control of Dynamical Systems'' 102/144



State estimation
State estimation problem

At each time k construct an estimate x̂(k)of the statex(k), by onlymeasuring

the output y(k) and input u(k).

• Open-loop observer: Build an artificial copy of the system, fed in parallel by

with the same input signal u(k)

x(k) y(k)
A,B

u(k)
C

A,B

!"#$%&'$()*+,'-..

x(k)ˆ
./$/-)-./&%$/-

/+0-)./$/-

• The “copy” is a numerical simulator x̂(k + 1) = Ax̂(k) +Bu(k) reproducing

the behavior of the real system
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Open-loop observer

x(k) y(k)
A,B

u(k)
C

A,B

!"#$%&'$()*+,'-..

x(k)ˆ
./$/-)-./&%$/-

/+0-)./$/-

• The dynamics of the real system and of the numerical copy are

x(k + 1) = Ax(k) +Bu(k) True process

x̂(k + 1) = Ax̂(k) +Bu(k) Numerical copy

• The dynamics of the estimation error x̃(k) = x(k)− x̂(k) are

x̃(k + 1) = Ax(k) +Bu(k)−Ax̂(k)−Bu(k) = Ax̃(k)

and then x̃(k) = Ak(x(0)− x̂(0))
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Open-loop observer

x(k) y(k)
A,B

u(k)
C

A,B

!"#$%&'$()*+,'-..

x(k)ˆ
./$/-)-./&%$/-

/+0-)./$/-

The estimation error is x̃(k) = Ak(x(0)− x̂(0)). This is not ideal, because

• The dynamics of the estimation error are fixed by the eigenvalues ofA and

cannot bemodified

• The estimation error vanishes asymptotically if and only ifA is asymptotically

stable

• Note that we are not exploiting y(k) to compute the state estimate x̂(k) !
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Luenberger observer

x(k) y(k)
A,B

u(k)
C

A,[B L]

!"#$%&'$()*+,'-..

x(k)ˆ

./$/-)

-./&%$/-

/+0-)./$/-

+
-

C
y(k)ˆ

./$/-),1.-+2-+

• Luenberger observer: Correct the estimation equation with a

feedback from the estimation error y(k)− ŷ(k)

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− Cx̂(k))︸ ︷︷ ︸
feedback on estimation error

whereL ∈ Rn×p is the observer gain

David G. Luenberger
(1937–)
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Luenberger observer

x(k) y(k)
A,B

u(k)
C

A,[B L]

!"#$%&'$()*+,'-..

x(k)ˆ

./$/-)

-./&%$/-

/+0-)./$/-

+
-

C
y(k)ˆ

./$/-),1.-+2-+

• The dynamics of the state estimation error x̃(k) = x(k)− x̂(k) is

x̃(k + 1) = Ax(k) +Bu(k)−Ax̂(k)−Bu(k)− L[y(k)− Cx̂(k)]

= (A− LC)x̃(k)

and then x̃(k) = (A− LC)k(x(0)− x̂(0))

• Same idea for continuous-time systems ẋ(t) = Ax(t) +Bu(t)

dx̂(t)

dt
= Ax̂(t) +Bu(t) + L[y(t)− Cx̂(t)]

The dynamics of the state estimation error are dx̃(t)
dt = (A− LC)x̃(t)
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Eigenvalue assignment of state observer
Theorem

If the pair (A,C) is “observable” (= (A′, C ′) “reachable”), then the eigenvalues

of (A− LC) can be placed arbitrarily.

MATLAB
L=acker(A’,C’,P)’;
L=place(A’,C’,P)’;

whereP = [λ1λ2 . . . λn] = desired observer

eigenvalues

0 10 20 30 40
−20

0

20

40

60

80

time (s)

 

 

true state
estimator L1
estimator L2
estimator L3 response from initial conditions

x(0) =
[−1

1

]
, x̂(0) = [ 00 ] for

u(k) ≡ 0.1 for different choices of

the observer poles
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Dynamic compensators



Potential issues in state feedback control

• Measuring the entire state vector may be too expensive (many sensors)

• It may be even impossible (high temperature, high pressure, inaccessible

environment)

Canwe use the estimate x̂(k) instead of x(k) to close the loop ?
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Dynamic compensator

x(k) y(k)
A,B

u(k)
C

.0$0-

-.0&%$0,+

!"#$%&'$()*+,'-..

v(k)

!"#$%&'),/0*/0)1--!2$'3)',#0+,((-+

K
x(k)ˆ++

• Assume the open-loop system is completely observable and reachable

• Construct the linear state observer

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− Cx̂(k))

• Set u(k) = Kx̂(k) + v(k)

• The dynamics of the error estimate x̃(k) = x(k)− x̂(k) is

x̃(k+1) = Ax(k)+Bu(k)−Ax̂(k)−Bu(k)+L(Cx(k)−Cx̂(k)) = (A−LC)x̃(k)

The error estimate does not depend on the feedback gainK !
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Closed-loop dynamics
• Let’s combine the dynamics of the system, observer, and feedback gain

x(k + 1) = Ax(k) +Bu(k)

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− Cx̂(k))

u(k) = Kx̂(k) + v(k)

y(k) = Cx(k)

• Take x(k), x̃(k) as state components of the closed-loop system[
x(k)

x̃(k)

]
=

[
I 0

I −I

][
x(k)

x̂(k)

]
(it is indeed a change of coordinates)

• The closed-loop dynamics is

[
x(k + 1)

x̃(k + 1)

]
=

[
A+BK −BK

0 A− LC

][
x(k)

x̃(k)

]
+

[
B

0

]
v(k)

y(k) =
[
C 0

] [ x(k)
x̃(k)

]
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Closed-loop dynamics
• The transfer function from v(k) to y(k) is

G(z) =
[
C 0

] [ zI −A−BK BK

0 zI −A+ LC

]−1 [
B

0

]

=
[
C 0

] [ (zI −A−BK)−1 ⋆

0 (zI −A+ LC)−1

][
B

0

]

= C(zI −A−BK)−1B =
N(z)

DK(z)

• Even if we substituted x(k)with x̂(k), the input-output behavior of the

closed-loop system didn’t change !

The closed-loop poles can be assigned arbitrarily using dynamic output feed-

back, as in the state feedback case

The closed-loop transfer function does not depend on the observer gainL
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Separation principle

Separation principle

The design of the control gainK and of the observer gainL can be done inde-

pendently

• Watch out ! G(z) = C(zI −A−BK)−1B only represents the I/O

(=input/output) behavior of the closed-loop system

• The complete set of poles of the closed-loop system are given by

det(zI−
[
A+BK −BK

0 A−LC

]
) = det(zI−A−BK) det(zI−A+LC) = DK(z)DL(z)

• A zero/pole cancellation of the observer poles has occurred:

G(z) =
[
C 0

]
(zI −

[
A+BK −BK

0 A−LC

]
)−1

[
B

0

]
=

N(z)DL(z)

DK(z)DL(z)
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Transient effects of the estimator gain

• L has an effect on the natural response of the system !

• To see this, consider the effect of a nonzero initial condition
[
x(0)
x̃(0)

]
for v(k) ≡ 0

y(0) = Cx(0)

y(1) =
[
C 0

] [
A+BK −BK

0 A−LC

] [ x(0)
x̃(0)

]
=

[
C 0

] [
(A+BK)x(0)−BKx̃(0)

(A−LC)x̃(0)

]
= C(A+BK)x(0)− CBKx̃(0)

y(2) =
[
C 0

] [
A+BK −BK

0 A−LC

] [ x(1)
x̃(1)

]
= C(A+BK)x(1)− CBKx̃(1)

= C(A+BK)2x(0)− C(A+BK)BKx̃(0)− CBK(A− LC)x̃(0)

• If x̃(0) ̸= 0,L has an effect during the transient !
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Choosing the estimator gain

• Intuitively, if x̂(k) is a poor estimate of x(k) then the control action will also be

poor

Ruleof thumb: place theobserverpoles≈ 10 times faster than

the controller poles

• Optimal methods exist to choose the observer poles (Kalman filter)

• Fact: The choice ofL is very important for determining the sensitivity of the

closed-loop systemwith respect to input and output noise
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Example: Control of a DC Motor

d3y

dt
+ β

d2y

dt
+ α

dy

dt
= Ku

u y

MATLAB
K=1; beta=.3; alpha=1;
G=tf(K,[1 beta alpha 0]);

ts=0.5; % sampling time
Gd=c2d(G,ts);
sysd=ss(Gd);
[A,B,C,D]=ssdata(sysd);

% Controller
polesK=[-1,-0.5+0.6*j,-0.5-0.6*j];
polesKd=exp(ts*polesK);
K=-place(A,B,polesKd);

% Observer
polesL=[-10, -9, -8];
polesLd=exp(ts*polesL);
L=place(A’,C’,polesLd)’;

MATLAB
% Closed-loop system, state=[x;xhat]

bigA=[A,B*K;L*C,A+B*K-L*C];
bigB=[B;B];
bigC=[C,zeros(1,3)];
bigD=0;
clsys=ss(bigA,bigB,bigC,bigD,ts);

x0=[1 1 1]’; % Initial state
xhat0=[0 0 0]’; % Initial estimate
T=20;
initial(clsys, [x0;xhat0],T);
pause

t=(0:ts:T)’;
v=ones(size(t));
lsim(clsys,v);
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Example: Control of a DC Motor

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

time (s)

x(0) =
[
1
1
1

]
, x̂(0) =

[
0
0
0

]
, v(k) ≡ 0

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

time (s)

x(0) = x̂(0) =
[
0
0
0

]
, v(k) ≡ 1
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Linear quadratic regulation



Linear quadratic regulation (LQR)

• State-feedback control via pole placement requires one to assign the

closed-loop poles

• Anyway to place closed-loop poles automatically and optimally ?

• Themain control objectives are

1. Make the state x(k) “small” (to converge to the origin)

2. Use “small” input signals u(k) (to minimize actuators’ effort)

These are conflicting goals !

• LQR is a technique to place automatically and optimally the closed-loop poles
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Finite-time optimal control

• Consider the linear system x(k + 1) = Ax(k) +Bu(k)with initial condition

x(0)

• We look for the optimal sequence of inputs

U = {u(0), u(1), . . . , u(N − 1)}

driving the state x(k) towards the origin and that minimizes the performance

index

J(x(0), U) = x′(N)QNx(N) +

N−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k) quadratic cost

whereQ = Q′ ⪰ 0,R = R′ ≻ 0,QN = Q′N ⪰ 06

6For amatrixQ ∈ Rn×n ,Q ≻ 0means thatQ is a positive definitematrix, i.e., x′Qx > 0 for all

x ̸= 0, x ∈ Rn .QN ⪰ 0means positive semidefinite, x′Qx ≥ 0, ∀x ∈ Rn
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Finite-time optimal control
• Example: Q diagonalQ = diag(q1, . . . , qn), single input,QN = 0

J(x(0), U) =

N−1∑
k=0

(
n∑

i=1

qix
2
i (k)

)
+Ru2(k)

• Consider again the general linear quadratic (LQ) problem

J(x(0), U) = x′(N)QNx(N) +

N−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k)

– N is called the time horizon over which we optimize performance

– The first term x′Qx penalizes the deviation of x from the desired target x = 0

– The second term u′Ru penalizes actuator authority

– The third term x′(N)QNx(N) penalizes howmuch the final state x(N) deviates

from the target x = 0

• Q,R,QN are the tuning parameters of optimal control design (cf. the

parameters of the PID controllerKp, Ti, Td)
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Minimum-energy controllability
• Consider again the problem of controllability of the state to zero withminimum

energy input

minU

∥∥∥∥∥∥∥∥∥∥


u(0)

u(1)
...

u(N − 1)


∥∥∥∥∥∥∥∥∥∥

s.t. x(N) = 0

• Theminimum-energy control problem can be seen as a particular case of the LQ

optimal control problem by setting

R = I, Q = 0, QN = ∞ · I
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Solution to LQ optimal control problem
• By substituting x(k) = Akx(0) +

∑k−1
i=0 AiBu(k − 1− i) in

J(x(0), U) =
N−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k) + x′(N)QNx(N)

we obtain

J(x(0), U) =
1

2
U ′HU + x(0)′FU +

1

2
x(0)′Y x(0)

whereH = H ′ ≻ 0 is a positive definite matrix

• The optimizerU∗ is obtained by zeroing the gradient

0 = ∇UJ(x(0), U) = HU + F ′x(0)

−→ U∗ =


u∗(0)

u∗(1)
...

u∗(N − 1)

 = −H−1F ′x(0)
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[LQ problem matrix computation]

J(x(0), U) = x
′
(0)Qx(0) +



x(1)

x(2)

.

.

.
x(N − 1)

x(N)



′ 

Q 0 0 . . . 0

0 Q 0 . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
0 . . . 0 Q 0

0 0 . . . 0 QN


︸ ︷︷ ︸

Q̄



x(1)

x(2)

.

.

.
x(N − 1)

x(N)

 +

[
u′(0) u′(1) . . . u′(N − 1)

]


R 0 . . . 0

0 R . . . 0

.

.

.

.

.

.
.
.
.

.

.

.
0 . . . 0 R


︸ ︷︷ ︸

R̄


u(0)

u(1)

.

.

.
u(N − 1)




x(1)

x(2)

.

.

.
x(N)

 =

S̄︷ ︸︸ ︷
B 0 . . . 0

AB B . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

AN−1B AN−2B . . . B


 u(0)

u(1)

. . .

u(N − 1)

 +


A

A2

.

.

.

AN


︸ ︷︷ ︸

N̄

x(0)

J(x(0), U) = x
′
(0)Qx(0) + (S̄U + N̄x(0))

′
Q̄(S̄U + N̄x(0)) + U

′
R̄U

=
1

2
U

′
2(R̄ + S̄

′
Q̄S̄)︸ ︷︷ ︸

H

U + x
′
(0) 2N̄

′
Q̄S̄︸ ︷︷ ︸

F

U +
1

2
x
′
(0) 2(Q + N̄

′
Q̄N̄)︸ ︷︷ ︸

Y

x(0)
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Solution to LQ optimal control problem

• The solution

U∗ =


u∗(0)

u∗(1)
...

u∗(N − 1)

 = −H−1F ′x(0)

is an open-loop one: u(k) = fk(x(0)), k = 0, 1, . . . , N − 1

• Moreover the dimensions of theH andF matrices is proportional to the time

horizonN

• We use optimality principles next to find a better solution (computationally

more efficient, andmore elegant)
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Dynamic programming

• Consider the following basic fact in optimization

V0 ≜ min
z,y

f(z, y) = min
z

{ min
y

f(z, y)︸ ︷︷ ︸
this is a function of z

}

• In case f is separable in the sum of two functions

f(z, y) ≜ f0(z) + f1(z, y)

we getminy f(z, y) = f0(z) + miny f1(z, y)

• Therefore we can compute V0 in two steps

V1(z) = min
y

f1(z, y)

V0 = min
z

{f0(z) + V1(z)}

• We apply the above reasoning to f = J(x(0), U), z = [u′(0) . . . u(k1 − 1)′]′,

y = [u′(k1) . . . u(N − 1)′]′
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Dynamic programming

• At a generic instant k1 and state x(k1) = z consider the optimal cost-to-go

Vk1(z) = min
u(k1),...,u(N−1)


N−1∑
k=k1

x′(k)Qx(k) + u′(k)Ru(k) + x′(N)QNx(N)


Principle of dynamic programming

V0(x(0)) = min
U≜{u(0),...,u(N−1)}

J(x(0), U)

= min
u(0),...,u(k1−1)

{
k1−1∑
k=0

x′(k)Qx(k) + u′(k)Ru(k) + Vk1(x(k1))

}

• Starting at x(0), theminimum cost over [0, N ] equals theminimum cost spent

until step k1 plus the optimal cost-to-go from k1 toN starting at x(k1)
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Bellman's principle of optimality
Bellman’s principle

Given the optimal sequence U∗ = [u∗(0), . . . , u∗(N − 1)]

(and the corresponding optimal trajectory x∗(k)), the subsequence

[u∗(k1), . . . , u
∗(N − 1)] is optimal for the problem on the horizon

[k1, N ], starting from the optimal state x∗(k1) Richard Bellman

(1920-1984)

time

Nk10

optimal state x∗(k)

time

Nk10

optimal input u∗(k)

Tuesday, May 11, 2010

• Given the state x∗(k1), the optimal input trajectory u∗

on the remaining interval [k1, N ] only depends on

x∗(k1)

• Then each optimal move u∗(k) of the optimal trajectory

on [0, N ] only depends on x∗(k)

• The optimal control policy can be always expressed in

state feedback form u∗(k) = u∗(x∗(k)) !
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Bellman's principle of optimality

• The principle also applies to nonlinear systems

and/or non-quadratic cost functions: the optimal

control law can be always written in state-feedback

form

u∗(k) = fk(x
∗(k)), ∀k = 0, . . . , N − 1

optimal state trajectories x∗

• Compared to the open-loop solution {u∗(0), . . . , u∗(N − 1)} = f(x(0)) the

feedback form u∗(k) = fk(x
∗(k)) has the big advantage of beingmore robust

with respect to perturbations: at each time kwe apply the best move on the

remaining period [k,N ]
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Riccati iterations
By applying the dynamic programming principle, we can compute the optimal

inputs u∗(k) recursively as a function of x∗(k) (Riccati iterations):

1. Initialization: P (N) = QN

2. For k = N, . . . , 1, compute recursively the following

matrix

P (k−1) = Q−A′P (k)B(R+B′P (k)B)−1B′P (k)A+A′P (k)A

3. Define

K(k) = −(R+B′P (k + 1)B)−1B′P (k + 1)A

The optimal input is

u∗(k) = K(k)x∗(k)

Jacopo Francesco Riccati
(1676–1754)

The optimal input policy u∗(k) is a (linear time-varying) state feedback !
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Linear quadratic regulation
• Consider the infinite-horizon optimal control problem

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

x′(k)Qx(k) + u′(k)Ru(k)

Result

Let (A,B) be a stabilizable pair,R ≻ 0,Q ⪰ 0. There exists a unique solution

P∞ of the algebraic Riccati equation (ARE)

P∞ = A′P∞A+Q−A′P∞B(B′P∞B +R)−1B′P∞A

such that the optimal cost is V∞(x(0)) = x′(0)P∞x(0) and the optimal con-

trol law is the constant linear state feedback u(k) = KLQRx(k)with

KLQR = −(R+B′P∞B)−1B′P∞A.

MATLAB
P∞ = dare(A,B,Q,R)

MATLAB
[-K∞,P∞] = dlqr(A,B,Q,R)
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Linear quadratic regulation

• Go back to Riccati iterations: starting fromP (∞) = P∞ and going backwards

we getP (j) = P∞, ∀j ≥ 0

• Accordingly, we get

K(j) = −(R+B′P∞B)−1B′P∞A ≜ KLQR, ∀j = 0, 1, . . .

• The LQR control law is linear and time-invariant
MATLAB
» [-K∞,P∞,E] = lqr(sysd,Q,R)

E= closed-loop poles

= eigenvalues of (A+BKLQR)

• Closed-loop stability is ensured if (A,B) is stabilizable,R ≻ 0,Q ⪰ 0, and

(A,Q
1
2 ) is detectable, whereQ

1
2 is theCholesky factor7 ofQ

• LQR is an automatic and optimal way of placing poles !

• A similar result holds for continuous-time linear systems (MATLAB: lqr)

7Given amatrixQ = Q′ ⪰ 0, its Cholesky factor is an upper-triangular matrixC such that

C′C = Q (MATLAB: chol)
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LQR with output weighting
• We often want to regulate only y(k) = Cx(k) to zero, so define

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

y′(k)Qyy(k) + u′(k)Ru(k)

• The problem is again an LQR problemwith equivalent stateweightQ = C ′QyC

MATLAB
» [-K∞,P∞,E] = dlqry(sysd,Qy,R)

Corollary

Let (A,B) stabilizable, (A,C) detectable, R > 0, Qy > 0. The LQR control

law u(k) = KLQRx(k) the asymptotically stabilizes the closed-loop system

lim
t→∞

x(t) = 0, lim
t→∞

u(t) = 0

Intuitively: theminimum cost x′(0)P∞x(0) is finite⇒ y(k)→ 0 andu(k)→ 0.

y(k)→ 0 implies that the observable part of the state→ 0. Asu(k)→ 0, the unobservable states

remain undriven and go to zero spontaneously (=detectability condition)
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LQR example

• Two-dimensional single input single output (SISO) dynamical system (double

integrator)

x(k + 1) =

[
1 1

0 1

]
x(k) +

[
0

1

]
u(k)

y(k) =
[
1 0

]
x(k)

• LQR (infinite horizon) controller defined on the performance index

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

1

ρ
y2(k) + u2(k), ρ > 0

• Weights: Q = [ 10 ] · 1
ρ · [ 1 0 ] =

[
1
ρ 0

0 0

]
,R = 1

• Note that only the ratioQ11/R = 1
ρ matters, as scaling the cost function does

not change the optimal control law
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LQR Example

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1
output y(k)

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1
input u(k)

ρ = 0.1 (red line)

K = [−0.8166 − 1.7499]

ρ = 10 (blue line)

K = [−0.2114 − 0.7645]

ρ = 1000 (green line)

K = [−0.0279 − 0.2505]

Initial state: x(0) = [ 10 ]

V∞(x(0)) = min
u(0),u(1),...

∞∑
k=0

1

ρ
y2(k) + u2(k)
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Kalman filtering



Kalman filtering -- Introduction

• Problem: assign observer poles in an optimal way, that is tominimize the state

estimation error x̃ = x− x̂

• Information comes in twoways: from sensors measurements (a posteriori) and

from themodel of the system (a priori)

• We need tomix the two information sources optimally, given a probabilistic

description of their reliability (sensor precision, model accuracy)

Rudolf E. Kalman∗

(1930–2016)

TheKalman filter solves this problem, and is now

themost used state observer in most engineering

fields (and beyond)

∗R.E. Kalman receiving theMedal of Science from the President of the USA onOctober 7, 2009
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Process model
• The process is modeled as the linear time-varying systemwith noise

x(k + 1) = A(k)x(k) +B(k)u(k) +G(k)ξ(k)

y(k) = C(k)x(k) +D(k)u(k) + ζ(k)

x(0) = x0

• ξ(k) ∈ Rq = process noise. We assumeE[ξ(k)] = 0 (zeromean),

E[ξ(k)ξ′(j)] = 0 ∀k ̸= j (white noise), andE[ξ(k)ξ′(k)] = Q(k) ⪰ 0

(covariancematrix)

• ζ(k) ∈ Rp =measurement noise,E[ζ(k)] = 0,E[ζ(k)ζ ′(j)] = 0 ∀k ̸= j,

E[ζ(k)ζ ′(k)] = R(k) ≻ 0

• x0 ∈ Rn is a random vector,E[x0] = x̄0,

E[(x0 − x̄0)(x0 − x̄0)
′] = V ar[x0] = P0,P0 ⪰ 0

• Vectors ξ(k), ζ(k), x0 are uncorrelated: E[ξ(k)ζ ′(j)] = 0,E[ξ(k)x′0] = 0,

E[ζ(k)x′0] = 0, ∀k, j ∈ Z
• Probability distributions: we often assume normal (=Gaussian) distributions

ξ(k) ∼ N (0, Q(k)), ζ(k) ∼ N (0, R(k)), x0 ∼ N (x̄0, P0)
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Kalman filter

Introduce some quantities:

x̂(k|k − 1) state estimate at time k based on
data up to time k − 1

x̃(k|k − 1) = x(k)− x̂(k|k − 1) state estimation error
P (k|k − 1) = E [x̃(k|k − 1)x̃(k|k − 1)′] covariance of state estimation error
x̂(k|k) state estimate at time k

based on data up to time k

x̃(k|k) = x(k)− x̂(k|k) state estimation error
P (k|k) = E [x̃(k|k)x̃(k|k)′] covariance of state estimation error
x̂(k + 1|k) state prediction at time k + 1

based on data up to time k
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Kalman filter
• The Kalman filter provides the optimal estimate x̂(k|k) of x(k) given the
measurements up to time k

• Optimality means that the trace of the varianceP (k + 1|k) is minimized

• The filter is based on two steps:

1. measurement update based on themost recent y(k)

M(k) = P (k|k − 1)C(k)′[C(k)P (k|k − 1)C(k)′ +R(k)]−1

x̂(k|k) = x̂(k|k − 1) +M(k) (y(k)− C(k)x̂(k|k − 1)−D(k)u(k))

P (k|k) = (I −M(k)C(k))P (k|k − 1)

with initial conditions x̂(0| − 1) = x̂0,P (0| − 1) = P0

2. time update based on themodel of the system

x̂(k + 1|k) = Ax̂(k|k) +Bu(k)

P (k + 1|k) = A(k)P (k|k)A(k)′ +G(k)Q(k)G(k)′
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Stationary Kalman filter

• AssumeA,C ,G,Q,R are constant.

• Under suitable assumptions8,P (k|k − 1),M(k) converge to the constant

matrices

P∞ = AP∞A′ +GQG′ −AP∞C ′ [CP∞C ′ +R]
−1

CP∞A′

M = P∞C ′(CP∞C ′ +R)−1

• By settingL = AM the dynamics of the prediction x̂(k|k − 1) becomes the

Luenberger observer

x̂(k + 1|k) = Ax̂(k|k − 1) +B(k)u(k) + L(y(k)− Cx̂(k|k − 1)−D(k)u(k))

with all the eigenvalues of (A− LC) inside the unit circle

MATLAB
»[˜,L,P∞,M,Z]=kalman(sys,Q,R)

Z = E[x̃(k|k)x̃(k|k)′]
8(A,C) observable, and (A,GBq) stabilizable, whereQ = BqB′

q (Bq=Cholesky factor ofQ)
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Tuning Kalman filters

• It is usually hard to quantify exactly the correct values ofQ andR for a given

process

• The diagonal terms ofR are related to how noisy are output sensors

• Q is harder to relate to physical noise, it mainly relates to how rough is the

(A,B)model

• After all,Q andR are the tuning knobs of the observer (similar to LQR)

• The “larger” isRwith respect toQ the “slower” is the observer to converge (L,

M will be small)

• On the contrary, the “smaller” isR thanQ, themore precise are considered the

measurments, and the “faster” observer will be to converge
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Extended Kalman filter
• The Kalman filter can be extended to nonlinear systems

x(k + 1) = f(x(k), u(k), ξ(k))

y(k) = g(x(k), u(k)) + ζ(k)
1. Measurement update:

C(k) =
∂g

∂x
(x̂k|k−1, u(k))

M(k) = P (k|k − 1)C(k)′[C(k)P (k|k − 1)C(k)′ +R(k)]−1

x̂(k|k) = x̂(k|k − 1) +M(k) (y(k)− g(x̂(k|k − 1), u(k)))

P (k|k) = (I −M(k)C(k))P (k|k − 1)

2. Time update:

x̂(k + 1|k) = f(x̂(k|k), u(k)), x̂(0| − 1) = x̂0

A(k) =
∂f

∂x
(x̂k|k, u(k), E[ξ(k)]), G(k) =

∂f

∂ξ
(x̂k|k, u(k), E[ξ(k)])

P (k + 1|k) = A(k)P (k|k)A(k)′ +G(k)Q(k)G(k)′, P (0| − 1) = P0

• The EKF is in general not optimal andmay even diverge, due to linearization.

But is the de-facto standard in nonlinear state estimation
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LQG control

• Linear Quadratic Gaussian (LQG) control combines an LQR control law and a

stationary Kalman predictor/filter

• Consider the stochastic dynamical system

x(k + 1) = Ax(k) +Bu(k) + ξ(k), w ∼ N (0, QKF )

y(k) = Cx(k) + ζ(k), v ∼ N (0, RKF )

with initial condition x(0) = x0, x0 ∼ N (x̄0, P0),P,QKF ⪰ 0,RKF ≻ 0, and ζ

and ξ are independent andwhite noise terms.

• The objective is tominimize the cost function

J(x(0), U) = lim
T→∞

1

T
E

[
T∑

k=0

x′(k)QLQx(k) + u′(k)RLQu(k)

]

when the state x is not measurable
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LQG control

If we assume that all the assumptions for LQR control and Kalman

predictor/filter hold, i.e.

• the pair (A,B) is reachable and the pair (A,Cq)withCq such that

QLQ = CqC
′
q is observable (hereQ is the weight matrix of the LQ controller)

• the pair (A,Bq), withBq s.t. QKF = BqB
′
q , is stabilizable, and the pair (A,C) is

observable (hereQ is the covariancematrix of the Kalman predictor/filter)

Then, apply the following procedure:

1. Determine the optimal stationary Kalman predictor/filter, neglecting the fact

that the control variable u is generated through a closed-loop control scheme,

and find the optimal gainLKF

2. Determine the optimal LQR strategy assuming the state accessible, and find the

optimal gainKLQR
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LQG control

x(k) y(k)
A,B

u(k)
C

3$(%$#

4(2-+

!"#$%&'$()*+,'-..

v(k)

/01)',#2+,((-+

KLQR
x(k)ˆ++

Sunday, May 16, 2010

Analogously to the case of output feedback control using a Luenberger

observer, it is possible to show that the extended state [x′ x̃′]′ has eigenvalues

equal to the eigenvalues of (A+BKLQR) plus those of (A− LKFC) (2n in

total)
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