Markov switching systems

Pantelis Sopasakis

IMT Institute for Advanced Studies Lucca

February 7, 2016

Outline

- 1. Introduction
- 2. Finite horizon optimal control
- 3. Uniform invariance
- 4. Lyapunov stability analysis
- 5. Stochastic MPC

I. Introduction

Encoding constraints in the cost

Let $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$ be the *extended real line*. We call functions of the form $F : X \to \overline{\mathbb{R}}$ (X is any set) *extended real valued* (ERV) functions. One such function is the *indicator of a set*:

$$\delta(x \mid C) = \begin{cases} 0, & \text{if } x \in C \\ +\infty, & \text{otherwise} \end{cases}$$

Encoding constraints in the cost

We can use indicator functions to encode constraints in the cost of an optimization problem. That is, let $f: \mathbb{R}^n \to \mathbb{R}$. Then,

 $\min_{x \in C} f(x),$

is equivalent to

$$\min_{x \in \mathbb{R}^n} f(x) + \delta(x \mid C).$$

The function $F(x) = f(x) + \delta(x \mid C)$ is an extended real valued function $F : \mathbb{R}^n \to \overline{\mathbb{R}}$.

Effective domain of an ERV function

The *effective domain* of an ERV function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is the set

$$\operatorname{dom} f := \left\{ x : f(x) < \infty \right\}.$$

The problem

 $\min_{x \in \mathbb{R}^n} f(x),$

is equivalent to

 $\min_{x \in \mathrm{dom}\, f} f(x).$

Effective domain property

Assume $f, g: \mathbb{R}^n \to \overline{\mathbb{R}}$. It is then easy to verify that¹

 $f \ge g \Rightarrow \operatorname{dom} f \subseteq \operatorname{dom} g.$

If not, there will be $x \in \text{dom } f \setminus \text{dom } g$, thus $g(x) = +\infty$ while $f(x) < \infty$ which is a contradiction.

¹The notation $f \ge g$ is meant as $f(x) \ge g(x)$ for all $x \in \mathbb{R}^n$.

Effective domain and epigraph

For an ERV function $f: \mathbbm{R}^n \to \bar{\mathbbm{R}}$, its epigraph a subset of \mathbbm{R}^{n+1} defined as follows

$$\operatorname{epi} f := \{(x, \alpha) : f(x) \le \alpha\}.$$

Then the effective domain of f is the projection of its epigraph on the x-space, i.e.,

dom
$$f = \{x \in \mathbb{R}^n : \exists \alpha \in \mathbb{R}$$
s.t. $(x, \alpha) \in \operatorname{epi} f\}$
= $\operatorname{proj}_x \operatorname{epi} f$.

Domain of a multi-valued function

For a $F: \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ we define its domain as the set

dom
$$F := \{x : F(x) \neq \emptyset\}.$$

The graph of F is defined as

$$gph F := \left\{ (x, y) \in \mathbb{R}^{m+n} : y \in F(x) \right\}.$$

Then, it is

$$\operatorname{dom} F = \operatorname{proj}_x \operatorname{gph} F.$$

Level boundedness

Take a function $\ell : \mathbb{R}^n \times \mathbb{R}^m \to \overline{\mathbb{R}}$

$$\ell : \mathbb{R}^n \times \mathbb{R}^m \ni (x, u) \mapsto f(x, u) \in \bar{\mathbb{R}}.$$

We say that *ell* is **level-bounded** in u **locally uniformly** in x if for every $\bar{x} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ there exists a neighbourhood of \bar{x} , $\mathcal{W}_{\bar{x}}$ and a bounded set $B \subset \mathbb{R}^m$ such that

$$\{u|f(x,u) \le \alpha\} \subseteq B,$$

for all $x \in \mathcal{W}_{\bar{x}}$.

Markovian switching systems

We will work with systems of the following form:

$$x(k+1) = f_{\theta(k)}(x(k), u(k)),$$

where $\theta(k)$ is a Markovian stochastic process with values drawn from $\mathcal{N}.$ When

$$f_i(x,u) = A_i x + B_i u,$$

we have a MJLS.

We assume that for all $i \in \mathcal{N}$, $f_i(\cdot, \cdot)$ are **continuous** in $\mathbb{R}^n \times \mathbb{R}^m$ and $f_i(0,0) = 0$.

Switching paths

Let $i \in \mathcal{N}$. We call the **cover** of mode i the set

$$\mathscr{C}(i) = \{ j \in \mathcal{N} : p_{ij} > 0 \}$$

A sequence of modes $\{i_0, i_1, \ldots\}$ is called an **admissible switching path** if $i_{s+1} \in \mathscr{C}(i_s)$ for all $s = 1, 2, \ldots$

We denote the set of all admissible switching paths by \mathfrak{A} and \mathfrak{A}_N will be the set of switching paths of length N.

We also define $\mathfrak{A}(i) = \{a \in \mathfrak{A} : a_0 = i\}$ and $\mathfrak{A}_N(i) = \{a \in \mathfrak{A}_N : a_0 = i\}.$

Switching paths

Summarizing:

$$\mathfrak{A} := \{a = \{a_i\}_{i \in \mathbb{N}} \mid \mathscr{C}(a_k) \ni a_{k+1}, \forall k \in \mathbb{N}\},$$
$$\mathfrak{A}_N := \{a = \{a_i\}_{i=0}^N \mid \mathscr{C}(a_k) \ni a_{k+1}, \forall k = 0, \dots, N-1\},$$
and for $i \in \mathcal{N}$:
$$\mathfrak{A}(i) = \{a \in \mathfrak{A} : a_0 = i\},$$

$$\mathfrak{A}_N(i) = \{ a \in \mathfrak{A}_N : a_0 = i \}.$$

Control laws and policies

A measurable function

$$u: \mathbb{R}^n \times \mathcal{N} \to \mathbb{R}^m$$

is called a control law.

A (finite of infinite) sequence of control laws

$$\pi = \{\mu_0, \mu_1, \ldots\},\$$

where μ_k is \mathcal{G}_k -measurable², is called a **control policy**.

I

 Π is the set of policies and Π_N is the set of policies of length N.

²Recall that \mathcal{G}_k denotes the σ -algebra generated by $\{x(t), \theta(t); t = 0, ..., N-1\}$. \mathcal{G}_k -measurability implies that μ_k is a function of x(k) and $\theta(k)$.

Solutions of Markovian switching systems

The **solution** of the aforementioned Markovian switching system with $x(0) = x_0$, $\theta(0) = i$ following a switching path $a \in \mathfrak{A}(i)$ and using a policy $\pi \in \Pi$ is denoted by

 $\phi(k; x, i, \pi, a).$

We have

$$\phi(k+1; x, i, \pi, a) = f_{a_k}(x_k, u_k),$$

where $x_k = \phi(k+1; x, i, \pi, a)$ and $u_k = \mu_k(x_k)$.

II. Finite horizon optimal control

Coming up...

- 1. Problem statement
- 2. Dynamic programming operators
- 3. Monotonicity properties of DP operators

The class of cost functions

We introduce the class of cost functions

$$fcns(\mathbb{R}^n, \mathcal{N}) := \{ f : \mathbb{R}^n \times \mathcal{N} \to \overline{\mathbb{R}} : f \ge 0, f(0, i) = 0, \forall i \in \mathcal{N} \}$$

FHOC problem

Let $\ell \in \operatorname{fcns}(\mathbb{R}^{n+m}, \mathcal{N})$ be the stage cost function – it has the form $\ell(x, u, i)$ – and $V_f \in \operatorname{fcns}(\mathbb{R}^n, \mathcal{N})$ be the terminal cost function. The finite horizon cost of a policy $\pi_N \in \Pi_N$ is

$$V_N(x, i, \pi_N) := \mathbb{E}\left[\sum_{k=0}^{N-1} \ell(x(k), u(k), \theta(k)) + V_f(x(N), \theta(N))\right]$$

with x(0) = x, $x(k) = \phi(k; x, i, \pi, \theta)$, $\theta \in \mathfrak{A}(i)$, $u(k) = \mu(x(k), \theta(k))$.

FHOC problem

We can of course encode constraints into the cost function V_N . In particular

$$V_N(x, i, \pi) < \infty \Leftrightarrow \begin{cases} (x(k), u(k)) \in \operatorname{dom} \ell(\cdot, \cdot, \theta(k)), \\ x(N) \in \operatorname{dom} V_f(\cdot, \theta(N)), \\ \text{for all paths } \{\theta(k)\}_{k=0, \dots, N} \in \mathfrak{A}(i). \end{cases}$$

Let $Y_i := \operatorname{dom} \ell(\cdot, \cdot, i)$ and $X_i^f := \operatorname{dom} V_f(\cdot, i)$.

Hereafter, we shall assume that the following constraints are imposed:

$$(x(k), u(k)) \in Y_{\theta(k)}$$
, and $x_N \in X^f_{\theta(N)}$.

FHOC problem

The value function is the mapping $V_N : \mathbb{R}^n \times \mathcal{N} \to \overline{\mathbb{R}}$:

$$V_N^{\star}(x,i) := \inf_{\pi \in \Pi_N} V_N(x,i,\pi).$$

The **optimal policy mapping** is a mapping $\Pi_N^\star : \mathbb{R}^n \times \mathcal{N} \rightrightarrows \Pi_N$

$$\Pi_N^\star := \underset{\pi \in \Pi_N}{\arg\min} V_N(x, i, \pi).$$

Dynamic programming operators

For $V \in fcns(\mathbb{R}^n, \mathcal{N})$ and control law $\mu : \mathbb{R}^n \times \mathcal{N} \to \mathbb{R}^m$ we define

$$\begin{aligned} \mathbf{T}_{\mu} V(x,i) &:= \ell(x,\mu(x,i),i) + \mathbb{E} \left[V(x(k+1)) \mid \mathcal{G}_k \right] \\ &= \ell(x,\mu(x,i),i) + \mathbb{E} \left[V(x(k+1)) \mid x(k) = x, \theta(k) = i \right] \\ &= \ell(x,\mu(x,i),i) + \sum_{j \in \mathscr{C}(i)} p_{ij} V(f_i(x,\mu(x,i)),j) \end{aligned}$$

This can be seen as a function $H(x, i, \mu, V)$ for which a standard **monotonicity assumption** holds (next slide).

Monotonicity of H and \mathbf{T}_{μ}

Fix $x \in \mathbb{R}^n$, $i \in \mathcal{N}$, a control law control law $\mu : \mathbb{R}^n \times \mathcal{N} \to \mathbb{R}^m$ the following holds³

 $V \le V' \Rightarrow H(x, i, \mu, V) \le H(x, i, \mu, V'),$

with $V, V' \in fcns(\mathbb{R}^n, \mathcal{N})$. This readily implies that

 $V \leq V' \Rightarrow \mathbf{T}_{\mu}(V) \leq \mathbf{T}_{\mu}(V').$

³For two functions $V_1, V_2 : X \to \overline{\mathbb{R}}$ (X is any set), the notation $V_1 \leq V_2$ means that for every $x \in X$ it is $V_1(x) \leq V_2(x)$.

Dynamic programming operators

Recall the definition of T_{μ}

$$\mathbf{T}_{\mu}V(x,i) = \ell(x,\mu(x,i),i) + \sum_{j \in \mathscr{C}(i)} p_{ij}V(f_i(x,\mu(x,i)),j).$$

The **DP operator** is defined as

$$\mathbf{T}V(x,i) := \inf_{u} \ell(x,u,i) + \sum_{j \in \mathscr{C}(i)} p_{ij} V(f_i(x,u),j),$$

and the optimal control operator is

$$\mathbf{S}V(x,i) := \underset{u}{\operatorname{arg\,min}} \ell(x,u,i) + \sum_{j \in \mathscr{C}(i)} p_{ij}V(f_i(x,u),j).$$

\mathbf{T}^k properties

For every $V \in \operatorname{fcns}(\mathbb{R}^n, \mathcal{N})$, $\mathbf{T}^k V \in \operatorname{fcns}(\mathbb{R}^n, \mathcal{N})$ for all $k \in \mathbb{N}$.

Proof.

Recall that

$$\mathbf{T}V(x,i) = \inf_{u} H(x,i,u,V).$$

Since H(0, i, 0, V) = 0 for every $V \in \text{fcns}(\mathbb{R}^n, \mathcal{N})$ and $i \in \mathcal{N}$ we have $\mathbf{T}V(0, i) = 0$. It is $H(x, i, u, V) \ge 0$ for all V and i, therefore $\mathbf{T}V \in \text{fcns}(\mathbb{R}^n, \mathcal{N})$.

Monotonicity of $\ensuremath{\mathrm{T}}$

From the monotonicity property of H we can infer that for functions $V,V'\in \mathrm{fcns}({\rm I\!R}^n,\mathcal{N})$ it is

 $V \leq V' \Rightarrow \mathbf{T}(V) \leq \mathbf{T}(V').$

Let \mathbf{T}^k be the composition of \mathbf{T} with itself k times. Then, by induction

 $V \le V' \Rightarrow \mathbf{T}^k(V) \le \mathbf{T}^k(V').$

DP solution

Let $\pi = {\{\mu_i\}}_{i=0}^k$ be a finite policy. We define $\mathbf{T}_{\mu_0} \mathbf{T}_{\mu_1} \cdots \mathbf{T}_{\mu_k}$ to be the composition of those operators. Then, using the definitions:

$$V_N(x,i,\pi) = (\mathbf{T}_{\mu_0}\cdots\mathbf{T}_{\mu_N})V_f(x,i).$$

And the value function is

$$V_N^{\star}(x,i) = \mathbf{T}^N V_f(x,i).$$

This last equation gives rise to the DP recursion.

DP algorithm

We construct a sequence of functions $\{V_i^{\star}\}_{i=0,\dots,N}$ with

$$V_0^{\star} = V_f$$

and

$$V_{k+1}^{\star} = \mathbf{T} V_k^{\star},$$
$$\mathcal{U}_{k+1}^{\star} = \mathbf{S} V_k^{\star}.$$

This returns V_N^{\star} and $\Pi_N^{\star} \equiv \mathcal{U}_N^{\star}$.

DP algorithm

If we replace ${\bf T}$ and ${\bf S}$ with their definitions we retrieve the typical DP algorithm formulation

$$V_0^\star(x,i) = V_f(x,i),$$

and

$$V_{k+1}^{\star}(x,i) = \inf_{u} \left\{ \ell(x,u,i) + \sum_{j \in \mathscr{C}(i)} p_{ij} V_k^{\star}(f_i(x,u),j) \right\},$$
$$\mathcal{U}_{k+1}^{\star}(x,i) = \arg_{u} \min_{u} \left\{ \ell(x,u,i) + \sum_{j \in \mathscr{C}(i)} p_{ij} V_k^{\star}(f_i(x,u),j) \right\}.$$

DP algorithm

Assume that⁴

 $V_f \geq \mathbf{T} V_f.$

Then,

$$V_k^{\star} = \mathbf{T}^{k-1} V_f \ge \mathbf{T}^k V_f = V_{k+1}^{\star}.$$

⁴ Juxtapose with Assumption 2.12 (Basic stability assumption): J.B. Rawlings and D.Q. Mayne, Model predictive control: stability and optimality, Nob Hill Publishing, 2009.

Normality assumptions

Hereafter, we assume that for every $i \in \mathcal{N}$

- 1. $\ell(\cdot, \cdot, i)$ are level-bounded in u locally uniformly in x,
- **2.** $V_f(\cdot, i)$ are lower-semicontinuous.

Consequences of the assumptions

Because of the normality assumptions:

- **1.** $\mathbf{T}^k V_f$ is lsc for all k,
- $\mathbf{2.} \ \operatorname{dom} \mathcal{U}_k^\star = \operatorname{dom} V_k^\star,$
- 3. When the infimum is finite, it is also attained,
- **4.** Every $\mathcal{U}_k^{\star}(\cdot, i)$ is compact.

III. Invariance notions for Markovian systems

Next slides...

- 1. Definition of a preimage operator
- 2. Definition of uniform control invariance (UCI)
- 3. Criteria for UCI
- 4. Link between DP and UCI
- 5. Maximal UCI and algorithmic determination

Collections of sets

We introduce the following definition for families of sets

$$\operatorname{sets}(\mathbb{R}^n, \mathcal{N}) := \{ C = \{ C_i \}_{i \in \mathcal{N}} \mid 0 \in C_i \subseteq \mathbb{R}^n, \forall i \in \mathcal{N} \}.$$

The preimage operator

For $C \in \text{sets}({\rm I\!R}^n, \mathcal{N})$ and $i \in \mathcal{N}$ we define

$$R(C,i) := \left\{ x \in \mathbb{R}^n \mid \exists u \in \mathbb{R}^m : (x,u) \in Y_i, \\ f_i(x,u) \in \bigcap_{j \in \mathscr{C}(i)} C_j \end{array} \right\}$$

We can write R(C, i) using the projection operator

$$R(C,i) := \operatorname{proj}_{x} \left\{ (x,u) \in Y_{i} \middle| f_{i}(x,u) \in \bigcap_{j \in \mathscr{C}(i)} C_{j} \right\}$$

Then define $R(C) \in sets(\mathbb{IR}^n, \mathcal{N})$

$$R(C) = \{R(C,i)\}_{i \in \mathcal{N}}.$$

Understanding R(C, i)

Assume $Y_i = X_i \times U_i$, i.e., constraints are for the form $x(k) \in X_{\theta(k)}$ and $u(k) \in U_{\theta(k)}$.

For $C \in \text{sets}(\mathbb{R}^n, \mathcal{N})$ and $i \in \mathcal{N}$, R(C, i) is the set of states $x \in X_i$ for which with some input $u(x) \in U_i$ so that the next state $x^+ = A_i x + B_i u$ is in all C_j with $j \in \mathscr{C}_i$.

Understanding R(C, i)

Let $V \in \operatorname{fcns}(\mathbb{R}^n, \mathcal{N})$ and $\operatorname{dom} V = C$ (i.e., $\operatorname{dom} V(\cdot, i) = C_i$ and $C = \{C_i\}_{i \in \mathcal{N}}$). Then $\operatorname{dom} \mathbf{T}V = R(C)$. Proof. Fix $i \in \mathcal{N}$:

$$dom \mathbf{T}V(\cdot, i) = \{x : \exists \alpha \in \mathbb{R}, (x, \alpha) \in \operatorname{epi} \mathbf{T}V(\cdot, i)\} \\ = \{x : \exists \alpha \in \mathbb{R}, \exists u : (x, u, \alpha) \in \operatorname{epi} H(\cdot, i, \cdot, V)\} \\ = \{x : \exists u : (x, u) \in \operatorname{dom} H(\cdot, i, \cdot, V)\} \\ = R(C, i).$$

Note: We used Prop. 1.18 in: R.T. Rockafellar and R.J.B Wets, Variational Analysis, Springer, 2009.
Properties of R

Recall that $X^f := \operatorname{dom} V_f = \operatorname{dom} V_0^{\star}$. What is $R(X^f)$?

$$R(X^f, i) = \left\{ x \in \mathbb{R}^n \middle| \begin{array}{l} \exists u \in \mathbb{R}^m : (x, u) \in Y_i, \\ f_i(x, u) \in \bigcap_{j \in \mathscr{C}(i)} X_j^f \end{array} \right\}$$

But, using that fact that $Y_i = \operatorname{dom} \ell(\cdot, \cdot, i)$, it is

$$R(X^f, i) = \operatorname{dom} V_1^{\star}(\cdot, i),$$

and consequently

 $R(X^f) = \operatorname{dom} V_1^\star.$

Properties of R

By induction, we can see that

$$R^k(X^f) = \operatorname{dom} V_k^\star.$$

and of course

$$R^N(X^f) = \operatorname{dom} V_N^\star.$$

Further Properties of *R*

Under the normality assumptions, it can be shown that dom $V_k^{\star} = \operatorname{dom} \mathcal{U}_k^{\star}$.

$$R^k(X^f) = \underbrace{\operatorname{dom} V_k^\star = \operatorname{dom} \mathcal{U}_k^\star}_{\text{The minimum is}}.$$

Uniform control invariance

A $C \in \text{sets}(\mathbb{R}^n, \mathcal{N})$ is called **uniformly control invariant** (UCI) for our Markovian switching system if there exists a policy $\pi \in \Pi$ such that

$$x(0) \in C_{\theta(0)} \Rightarrow \phi(k, x, \theta(0), \pi, \theta) \in C_{\theta(k)},$$

for every admissible switching path $\theta \in \mathfrak{A}(\theta(0))$.

Criterion for UCI

A $C \in sets(\mathbb{R}^n, \mathcal{N})$ is UCI if and only if

 $C \subseteq R(C).$

Proof.

Hint: Assume there is a $x \in C_i$ with $x \notin R(C, j)$ for some $j \in \mathscr{C}(i)$ and for all u such that $(x, u) \in Y_i$ which leads to contradiction (Exercise). \Box

DP and UCI

If $V_f \geq \mathbf{T} V_f$, then for $k \geq 1$: dom V_k^{\star} is UCI.

DP and UCI

If $V_f \geq \mathbf{T}V_f$, then for $k \geq 1$: dom V_k^{\star} is UCI.

Proof.

Recall that $C \in \operatorname{sets}(\mathbb{R}^n, \mathcal{N})$ is UCI iff $C \subseteq R(C)$. We know that $\operatorname{dom} V_k^{\star} = R^k(X^f)$ with $X^f := \operatorname{dom} V_f$. Given that $V_f \geq \mathbf{T}V_f$ we have $V_k^{\star} \geq V_{k+1}^{\star}$, thus for $k \geq 1$

$$V_k^{\star} \ge V_{k+1}^{\star} \Rightarrow \operatorname{dom} V_k^{\star} \subseteq \operatorname{dom} V_{k+1}^{\star}$$
$$\Rightarrow R^k(X^f) \subseteq R^{k+1}(X^f)$$
$$\Rightarrow R^k(X^f) \subseteq R(R^k(X^f))$$
$$\Rightarrow \operatorname{dom} V_k^{\star} \subseteq R(\operatorname{dom} V_k^{\star})$$

so dom V_k^{\star} is UCI.

Maximal UCI

Definition.

A UCI $X^* \in \text{sets}(\mathbb{R}^n, \mathcal{N})$ is called a **maximal UCI** family of sets if $X^* \supseteq X$ for every $X \in \text{sets}(\mathbb{R}^n, \mathcal{N})$ which is UCI.

Maximal UCI

The maximal UCI family of sets $X^{\star} = \{X_i^{\star}\}_{i \in \mathcal{N}}$ is given by

$$X_{i}^{\star} = \left\{ x \left| \begin{array}{c} \exists \pi \in \Pi : \phi(k, x, i, \pi, \theta) \in X_{\theta(k)}, \\ \forall k \in \mathbb{N}, \forall \theta \in \mathfrak{A}(i) \end{array} \right\} \right.$$

Proof.

The proof is left as an exercise.

٠

Determination of the maximal UCI

Assume that constraints are given in the form $x(k) \in X_{\theta(k)}$ and $u(k) \in U_{\theta(k)}$. The following recursion converges to the maximal UCI:

$$X^0 = X,$$
$$X^{k+1} = R(X_k),$$

where $X = \{X_i\}_{i \in \mathcal{N}}$ and notice that

$$X_i^k = \left\{ x \mid \exists \pi \in \Pi : \phi(k, x, i, \pi, \theta) \in X_{\theta(k)}, \\ \forall k \in \mathbb{N}, \forall \theta \in \mathfrak{A}_k(i) \end{cases} \right\}$$

But, the algorithm must converge in **finitely many steps** to return the maximal UCI...

Determination of the maximal UCI

Using the procedure:

$$X^0 = X,$$
$$X^{k+1} = R(X_k),$$

Assume X is a polytope and the system is a MJLS.

- + We converge to the maximal UCI
- Termination: $X^k = X^{k-1}$. It may not converge in **finite time** (even for MSS systems).
- It is computationally expensive to compute the minimal representation of each X^k
- None of the iterates needs to be UCI.

IV. Lyapunov stability analysis

Coming up...

- **1.** Uniform positive invariance
- 2. Definitions: MSS and MSES
- 3. Uniform positive invariance
- 4. Lyapunov stability conditions

Autonomous Markovian systems

Consider the Markovian switched system

$$x(k+1) = f^{\mu}_{\theta(k)}(x(k)) := f_{\theta(k)}(x(k), \mu(x(k), \theta(k))).$$

The solution of this system with $x(0)=x, \ \theta(0)=i \ \text{and} \ \theta \in \mathfrak{A}(i)$ is given by

$$x(k) = \phi(k, x, i, \theta).$$

We shall assume that the system state must satisfy $x(k) \in X_{\theta(k)}$.

Uniform positive invariance

A $C \in \text{sets}(\mathbb{R}^n, \mathcal{N})$ is **uniformly positively invariant** if there exists $\pi \in \Pi$ so that $\phi(k, x, i, \theta) \in C_{\theta(k)}$ whenever $x(0) = x \in C_{\theta(0)}$ for all $\theta \in \mathfrak{A}(i)$.

Now the preimage operator becomes

$$R(C,i) = \left\{ x \in X_i : f_i^{\mu}(x) \in \bigcap_{j \in \mathscr{C}(i)} C_j \right\}$$

Let $R(C) = \{R(C,i)\}_{i \in \mathcal{N}}$. Then X is UPI iff $C \subseteq R(C)$.

UPI determination

The maximal UPI set can be computed using the preimage iteration (same as for UCI) which converges in **finite steps** if and only if the closed-loop system is **uniformly asymptotically stable**.

MSS for constrained systems

Stability makes sense only with respect to a UPI set!

MSS for constrained systems

Let $X \in \text{sets}(\mathbb{R}^n, \mathcal{N})$ be a uniformly positive invariant family of sets for $x(k+1) = f^{\mu}_{\theta(k)}(x(k))$. The origin is called **mean square stable** if

 $\mathbb{E}\left[\|\phi(k,x,i,\theta)\|^2\right] \to 0, \text{ as } k \to \infty,$

for all $x \in X_i$ and $i \in \mathcal{N}$.

MSES for constrained systems

Let $X \in \text{sets}(\mathbb{R}^n, \mathcal{N})$ be a UPI for $x(k+1) = f^{\mu}_{\theta(k)}(x(k))$. The origin is called **mean square exponentially stable** if there exist $\beta > 1$ and $\eta \in (0, 1)$ $\mathbb{E}\left[\|\phi(k, x, i, \theta)\|^2 \right] \leq \beta \zeta^k \|x\|^2,$

for all $x \in X_i$ and $i \in \mathcal{N}$.

Definition of $\mathcal{L}V$

For $V \in fcns({\rm I\!R}^n, \mathcal{N})$ define the operator

 $\mathcal{L}V(x(k), \theta(k)) := \mathbb{E}\left[V(x(k+1), \theta(k+1)) - V(x(k), \theta(k)) \mid \mathcal{G}_k\right].$

It is easier to remember it as

$$\mathcal{L}V(x,i) \mathrel{\mathop:}= \mathbb{E}\left[V(x^+,i^+) - V(x,i) \mid (x,i): \text{ given}\right].$$

This can be written as

$$\mathcal{L}V(x(k),\theta(k)) := \mathbb{E}\left[V(x(k+1),\theta(k+1)) \mid \mathcal{G}_k\right] - V(x(k),\theta(k))$$
$$= \sum_{j \in \mathscr{C}(i)} p_{ij}V(f^{\mu}_{\theta(k)}(x(k)),\theta(k)) - V(x(k),\theta(k)).$$

Lyapunov theorem for MSS

If there is a $V \in \mathrm{fcns}(\mathrm{I\!R}^n,\mathcal{N})$ and a $\gamma > 0$ so that

 $\mathcal{L}V(x,i) \le -\gamma \|x\|^2,$

for all $x \in X_i$ and $i \in \mathcal{N}$, then the origin is **MSS**⁵.

⁵For details and proofs see: Patrinos et al., 2014.

Lyapunov theorem for MSS

If there is a $V \in fcns({\rm I\!R}^n, \mathcal{N})$ and a $\alpha, \beta, \gamma > 0$ so that

 $\mathcal{L}V(x,i) \le -\gamma \|x\|^2,$ $\alpha \|x\|^2 \le V(x,i) \le \beta \|x\|^2,$

for all $x \in X_i$ and $i \in \mathcal{N}$, then the origin is **MSES**.

* Supermartingale property

A $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ -random process $\{\xi_k\}_k$ which is adapted to a filtration $\{\mathcal{F}_k\}_k$ is called a **supermartingale** if

$$\mathbb{E}[\xi_{k+1} \mid \mathcal{F}_k] \leq \xi_k, \text{ w.p. } 1$$

for all $k \in \mathbb{N}$, $k \ge 1$.

* Supermartingale property

The condition $\mathcal{L}V(x,i) \leq -\gamma \|x\|^2$ implies that $\{V(x_k,i_k)\}_k$ is a supermatringale:

$$\mathcal{L}V(x_k, i_k) \leq -\gamma \|x_k\|^2$$

$$\Leftrightarrow \mathbb{E}[V(x_{k+1}, i_{k+1}) - V(x_k, i_k) \mid \mathcal{G}_k] \leq -\gamma \|x_k\|^2$$

$$\Leftrightarrow \mathbb{E}[V(x_{k+1}, i_{k+1}) \mid \mathcal{G}_k] - V(x_k, i_k) \leq -\gamma \|x_k\|^2$$

$$\Rightarrow \mathbb{E}[V(x_{k+1}, i_{k+1}) \mid \mathcal{G}_k] \leq V(x_k, i_k)$$

... We can invoke Doob's convergence theorem!

* Doob's convergence theorem

Let $(\Omega, \mathcal{F}, \{\mathcal{F}_k\}_{k \in \mathbb{N}}, P)$ be a filtered probability space and $\{Z_k\}_k$ an \mathcal{F}_k -adapted supermartingale satisfying

$$\sup_{k\in\mathbb{N}}\mathbb{E}[|Z_k|]<\infty.$$

Then the limit $Z_{\infty} = \lim_{k \to \infty} Z_k$ exists almost surely and $\mathbb{E}[Z_{\infty}] < \infty$.

V. Stochastic MPC

- 1. The receding horizon control law
- 2. Stability conditions
- 3. Stabilising MPC for constrained MJLS

Receding horizon control

The receding horizon control policy consists in solving the FHOC problem and applying the *first* control action to the system, that is^6

$$u(k) = \mu_N^{\star}(x(k), \theta(k)),$$

where

$$\mu_N^\star(x,i) \in \mathcal{U}_N^\star(x,i).$$

The controlled system will then be

$$x(k+1) = f_{\theta(k)}^{\mu_N^{\star}}(x(k)).$$

⁶We will refer to this control law as the *stochastic MPC* control law.

Stochastic MPC stability

Assume that $V_f \in \text{fcns}(\mathbb{R}^n, \mathcal{N})$ is lsc and $\mathbb{T}V_f \leq V_f$ and there is an $\alpha > 0$ s.t. $\ell(x, u, i) \geq \alpha ||x||^2$ for all $i \in \mathcal{N}$, $(x, u) \in Y_i$. Then the origin of the MPC-controlled system is MSS in $X^* := \text{dom } V_N^*$.

Proof.

We will show that V_N^{\star} is a Lyapunov function. We have $V_N^{\star} \in \text{fcns}(\mathbb{R}^n, \mathcal{N})$. It is $V_N^{\star} = \mathbf{T}_{\mu_N^{\star}} V_{N-1}$, that is

$$V_N^{\star}(x,i) = \ell(x,\mu_N^{\star}(x),i) + \sum_{j \in \mathscr{C}(i)} p_{ij} V_{N-1}^{\star}(f_i^{\mu_N^{\star}}(x),j).$$

By definition, we have

$$\mathcal{L}V_N^{\star}(x,i) = \sum_{j \in \mathcal{N}} p_{ij} V_N^{\star}(f_i^{\mu_N^{\star}}(x),j) - V_N^{\star}(x,i)$$

Stochastic MPC stability

Proof (cont'd).

Let us now plug V_N^{\star} into $\mathcal{L}V_N^{\star}$.

$$\mathcal{L}V_N^{\star}(x,i) = \sum_{j \in \mathcal{N}} p_{ij} V_N^{\star}(f_i^{\mu_N^{\star}}(x),j) - \ell(x,\mu_N^{\star}(x),i)$$
$$- \sum_{j \in \mathscr{C}(i)} p_{ij} V_{N-1}^{\star}(f_i^{\mu_N^{\star}}(x),j)$$

But given that $\mathbf{T} V_f \leq V_f$, we have $V_N^\star \leq V_{N-1}^\star$, so

$$\mathcal{L}V_N^{\star}(x,i) \le -\ell(x,\mu_N^{\star}(x),i) \le -\alpha \|x\|^2,$$

which proves MSS.

Examples of choosing $V_f \# \mathbf{0}$

A trivial choice is

$$V_f(x,i) = \delta_{\{0\}}(x),$$

but then $\operatorname{dom} V_N^\star$ shouldn't be expected to be too large.

For MJLS, we can choose V_f to be

$$V_f(x,i) = x' P_i x + \delta_{X_i^f}(x),$$

where $P = (P_i)_i$ solves the CARE

$$P_i = A_i' \mathcal{E}_i(P) A_i - A_i \mathcal{E}_i(P) B_i (R_i + B_i' \mathcal{E}_i(P) B_i)^{-1} B_i' \mathcal{E}_i(P) A_i + Q_i,$$

and $X^f = \{X_i^f\}_{i \in \mathcal{N}}$ is the maximal uniformly pos. invariant set for the closed-loop system with $\mu(x, i) = F_i(P)x$.

For MJLS: Assume that ℓ is piecewise quadratic, i.e.,

 $\ell(x, u, i) = x'Q_i x + u'R_i u + \delta_{Y_i}(x, u).$

If we require that V_f has the following form

$$V_f(x,i) = x' P_i x + \delta_{X_i^f}(x),$$

then for $V_f \geq \mathbf{T}V_f$ to hold it is necessary that

$$\operatorname{dom} V_f \subseteq \operatorname{dom} \mathbf{T} V_f \Leftrightarrow X^f \subseteq R(X^f)$$
$$\Leftrightarrow X^f \text{ is UCI}$$

and...

for all $x \in \operatorname{dom} V_f(\cdot, i)$

$$V_f(x,i) \ge \mathbf{T}V_f(x,i) := \inf_u \ell(x,u,i) + \sum_{j \in \mathscr{C}(i)} p_{ij} V(A_i x + B_i u, j).$$

This inequality will be satisfied if there is a control law $u(x,i) = K_i x$ s.t.

$$V_f(x,i) \ge \ell(x, K_i x, i) + \sum_j p_{ij} V_f((A_i + B_i K_i) x, j)$$

= $x' \left[Q_i + K'_i R_i K_i + (A_i + B_i K_i)' \mathcal{E}(P)(A_i + B_i K_i) \right] x$
+ $\delta_{Y_i}(x, K_i x) + \sum_{j \in \mathscr{C}(i)} \delta_{X_j^f}((A_i + B_i K_i) x).$

We can pick a UCI set $X^f \in \text{sets}(\mathbb{R}^n, \mathcal{N})$, a control law $u(x, i) = K_i x$, and a PWQ stage cost $\ell(x, u, i) = x'Q_i x + u'R_i u + \delta_{Y_i}(x, u)$ with $Q_i = Q'_i \ge 0$, $R_i = R'_i > 0$, so that

$$(x, K_i x) \in Y_i, \forall x \in X_i^f, \forall i \in \mathcal{N}, (A_i + B_i K_i) x \in X_j^f, \forall j \in \mathscr{C}(i), \forall x \in X_i^f, \forall i \in \mathcal{N}, P_i \ge Q_i + K_i' R_i K_i + (A_i + B_i K_i)' \mathcal{E}(P)(A_i + B_i K_i), \forall i \in \mathcal{N}, P_i = P_i' > 0, \forall i \in \mathcal{N}.$$

Then, the MPC-controlled system is MSS over $X^* = \operatorname{dom} V_N^*$. The above can be cast as an LMI (*Exercise*).

Notice that the first two requirements

$$(x, K_i x) \in Y_i, \forall x \in X_i^f, \forall i \in \mathcal{N}, (A_i + B_i K_i) x \in X_j^f, \forall j \in \mathscr{C}(i), \forall x \in X_i^f, \forall i \in \mathcal{N},$$

imply that X^f is **UPI** for the closed-loop system

$$x(k+1) = (A_{\theta(k)} + B_{\theta(k)}K_{\theta(k)})x(k),$$

subject to the constraints

$$(x(k), K_{\theta(k)}x(k)) \in Y_{\theta(k)}.$$

Ellipsoidal UCI sets

Assuming again that ℓ is PWQ and V_f is quadratic over X^f , we need to compute a UCI set⁷. Choose

 $X_{i}^{f} = \{ x \mid x' P_{i} x \le 1 \},\$

where P_i satisfy the inequalities on the previous slide. Under proper conditions, this will be a UPI set for the closed-loop system

$$x(k+1) = (A_{\theta(k)} + B_{\theta(k)}K_{\theta}(k))x(k).$$

⁷We can of course compute the maximal UCI set using the preimage iteration, but this may not converge and is often too cumbersome computationally especially in high-dimensional spaces. We can also use $X_i^f = \{0\}$, but then dom V_N^{\star} becomes too small.

Ellipsoidal UCI sets

A sufficient condition for X^f to be UCI is

 $x'P_ix \le 1 \Rightarrow x'(A_i + B_iK_i)'P_j(A_i + B_iK_i)x \le 1$

for all $i \in \mathcal{N}$ and $j \in \mathscr{C}(i)$. This can be cast as an LMI using the S-lemma (*Exercise*). Ellipsoidal UCI sets are often easier to determine than polytopic ones.
MSES for stochastic MPC

Assume that $V_f \in \operatorname{fcns}(\mathbb{R}^n, \mathcal{N})$ is lsc and $\mathbf{T}V_f \leq V_f$ and there is an $\alpha > 0$ s.t. $\ell(x, u, i) \geq \alpha ||x||^2$ for all $i \in \mathcal{N}$, $(x, u) \in Y_i$.

Additionally, assume that

- **1.** $0 \in \operatorname{int} \operatorname{dom} V_f$,
- **2.** each $V_N^{\star}(\cdot, i)$ is continuous on $X_i^N := \operatorname{dom} V_N(\cdot, i)$ and
- **3.** each X_i^N is compact.

Then, the origin is **MSES** in X^* for the MPC-controlled system.

MSES-stabilising stochastic MPC

When applying a stochastic MPC to

- 1. a MJLS
- 2. with a PWQ stage cost $(Q_i = Q'_i \ge 0 \text{ and } R_i = R'_i > 0)$,
- **3.** $V_f(x,i) = x'P_ix + \delta_{X_i^f}(x)$; P is the solution of the CARE and
- **4.** *X*^{*f*} is the maximal UPI of the closed-loop system with the control law associated to the CARE,

then, the origin is **MSES** for the SMPC-controlled system.

Samuelson's macro-economic model

Samuelson's multiplier-accelerator macroeconomic model is a $MJLS^8$ with modes:

- Normal
- Boom
- Slump

based on the economy's marginal propensity to save.

The model's state is related to the **national income** and the input corresponds to the **government expenditure**.

⁸W.P. Blair and D.D. Sworder. Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria. Int. J. Cont., 21(5):833–841, 1975.

Samuelson's macro-economic model

Three modes with

and

$$A_1 = \begin{bmatrix} 0 & 1 \\ -2.5 & 3.2 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 1 \\ -4.3 & 4.5 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 1 \\ 5.3 & -5.2 \end{bmatrix}$$
$$B_i = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

with transition matrix

$$P = \begin{bmatrix} 0.67 & 0.17 & 0.16\\ 0.3 & 0.47 & 0.23\\ 0.26 & 0.1 & 0.64 \end{bmatrix}$$

Mode-dependent constraints:

$$Y_1 = [-10, 10]^2 \times [-10, 10],$$

$$Y_2 = [-8, 8]^2 \times [-10, 10],$$

$$Y_3 = [-12, 12]^2 \times [-10, 10].$$

Mode-dependent quadratic stage cost:

$$Q_1 = \begin{bmatrix} 3.6 & -3.8 \\ -3.8 & 4.87 \end{bmatrix}, Q_2 = \begin{bmatrix} 10 & -3 \\ -3 & 8 \end{bmatrix}, Q_3 = \begin{bmatrix} 5 & -4.5 \\ -4.5 & 5 \end{bmatrix},$$

and

$$R_1 = 2.6, R_2 = 1.165, \text{ and } R_3 = 1.111.$$

Prediction horizon N = 6.

Samuelson's macro-economic model

 10^4 random simulations with $i_0 = 2$.

VI. Conclusions

Open research questions

- 1. Satisfaction of constraints in probability
- **2.** Economic stochastic MPC
- **3.** Efficient numerical algorithms for the solution of stochastic MPC problems
- **4.** Efficient methodologies for the computation of uniformly invariant families of sets

References

- O.L.V. Costa, M.D. Fragoso and R.P. Marques, *Discrete-time Markov Jump Linear Systems*, Springer 2005.
- P. Patrinos, P. Sopasakis, H. Sarimveis and A. Bemporad, Stochastic model predictive control for constrained discrete-time Markovian switching systems, Automatica 50, pp. 2504-2514, 2014.
- **3.** A. Shapiro, D. Dentcheva, and A.P. Ruszczyński, *Lectures on stochastic programming: modeling and theory*, SIAM 2009.
- 4. H.J. Kushner, *Introduction to stochastic control*, Holt, Rinehart and Winston Editions, 1971.
- 5. R.T. Rockafellar and R.J.B Wets, Variational Analysis, Springer, 2009.