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I. Introduction
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Encoding constraints in the cost

Let ĪR := IR ∪ {±∞} be the extended real line. We call functions of the
form F : X → ĪR (X is any set) extended real valued (ERV) functions.
One such function is the indicator of a set:

δ(x | C) =

{
0, if x ∈ C
+∞, otherwise
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Encoding constraints in the cost

We can use indicator functions to encode constraints in the cost of an
optimization problem. That is, let f : IRn → IR. Then,

min
x∈C

f(x),

is equivalent to
min
x∈IRn

f(x) + δ(x | C).

The function F (x) = f(x) + δ(x | C) is an extended real valued function
F : IRn → ĪR.
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Effective domain of an ERV function

The effective domain of an ERV function f : IRn → ĪR is the set

dom f := {x : f(x) <∞} .

The problem
min
x∈IRn

f(x),

is equivalent to
min

x∈dom f
f(x).
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Effective domain property

Assume f, g : IRn → ĪR. It is then easy to verify that1

f ≥ g ⇒ dom f ⊆ dom g.

If not, there will be x ∈ dom f \ dom g, thus g(x) = +∞ while f(x) <∞
which is a contradiction.

1The notation f ≥ g is meant as f(x) ≥ g(x) for all x ∈ IRn.
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Effective domain and epigraph

For an ERV function f : IRn → ĪR, its epigraph a subset of IRn+1 defined
as follows

epi f := {(x, α) : f(x) ≤ α}.

Then the effective domain of f is the projection of its epigraph on the
x-space, i.e.,

dom f = {x ∈ IRn : ∃α ∈ IRs.t. (x, α) ∈ epi f}
= projx epi f.
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Domain of a multi-valued function

For a F : IRm ⇒ IRn we define its domain as the set

domF := {x : F (x) 6= ∅} .

The graph of F is defined as

gphF :=
{

(x, y) ∈ IRm+n : y ∈ F (x)
}
.

Then, it is
domF = projx gphF.
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Level boundedness

Take a function ` : IRn × IRm → ĪR

` : IRn × IRm 3 (x, u) 7→ f(x, u) ∈ ĪR.

We say that ell is level-bounded in u locally uniformly in x if for every
x̄ ∈ IRn and α ∈ IR there exists a neighbourhood of x̄, Wx̄ and a bounded
set B ⊂ IRm such that

{u|f(x, u) ≤ α} ⊆ B,

for all x ∈ Wx̄.
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Markovian switching systems

We will work with systems of the following form:

x(k + 1) = fθ(k)(x(k), u(k)),

where θ(k) is a Markovian stochastic process with values drawn from N .
When

fi(x, u) = Aix+Biu,

we have a MJLS.

We assume that for all i ∈ N , fi(·, ·) are continuous in IRn × IRm and
fi(0, 0) = 0.
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Switching paths

Let i ∈ N . We call the cover of mode i the set

C (i) = {j ∈ N : pij > 0}

A sequence of modes {i0, i1, . . .} is called an admissible switching path
if is+1 ∈ C (is) for all s = 1, 2, . . ..

We denote the set of all admissible switching paths by A and AN will be
the set of switching paths of length N .

We also define A(i) = {a ∈ A : a0 = i} and AN (i) = {a ∈ AN : a0 = i}.
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Switching paths

Summarizing:

A := {a = {ai}i∈N | C (ak) 3 ak+1, ∀k ∈ N},

AN := {a = {ai}Ni=0 | C (ak) 3 ak+1,∀k = 0, . . . , N − 1},

and for i ∈ N :
A(i) = {a ∈ A : a0 = i},

AN (i) = {a ∈ AN : a0 = i}.
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Control laws and policies

A measurable function
µ : IRn ×N → IRm

is called a control law.

A (finite of infinite) sequence of control laws

π = {µ0, µ1, . . .},

where µk is Gk-measurable2, is called a control policy.

Π is the set of policies and ΠN is the set of policies of length N .

2Recall that Gk denotes the σ-algebra generated by {x(t), θ(t); t = 0, . . . , N−1}.
Gk-measurability implies that µk is a function of x(k) and θ(k).
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Solutions of Markovian switching systems

The solution of the aforementioned Markovian switching system with
x(0) = x0, θ(0) = i following a switching path a ∈ A(i) and using a policy
π ∈ Π is denoted by

φ(k;x, i, π, a).

We have
φ(k + 1;x, i, π, a) = fak(xk, uk),

where xk = φ(k + 1;x, i, π, a) and uk = µk(xk).
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II. Finite horizon optimal control

Coming up...

1. Problem statement

2. Dynamic programming operators

3. Monotonicity properties of DP operators
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The class of cost functions

We introduce the class of cost functions

fcns(IRn,N ) := {f : IRn ×N → ĪR : f ≥ 0, f(0, i) = 0, ∀i ∈ N}
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FHOC problem

Let ` ∈ fcns(IRn+m,N ) be the stage cost function – it has the form
`(x, u, i) – and Vf ∈ fcns(IRn,N ) be the terminal cost function. The
finite horizon cost of a policy πN ∈ ΠN is

VN (x, i, πN ) := E

[
N−1∑
k=0

`(x(k), u(k), θ(k)) + Vf (x(N), θ(N))

]

with x(0) = x, x(k) = φ(k;x, i, π, θ), θ ∈ A(i), u(k) = µ(x(k), θ(k)).
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FHOC problem

We can of course encode constraints into the cost function VN . In
particular

VN (x, i, π) <∞⇔


(x(k), u(k)) ∈ dom `(·, ·, θ(k)),
x(N) ∈ domVf (·, θ(N)),
for all paths {θ(k)}k=0,...,N ∈ A(i).

Let Yi := dom `(·, ·, i) and Xf
i := domVf (·, i).

Hereafter, we shall assume that the following constraints are imposed:

(x(k), u(k)) ∈ Yθ(k), and xN ∈ Xf
θ(N).
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FHOC problem

The value function is the mapping VN : IRn ×N → ĪR:

V ?
N (x, i) := inf

π∈ΠN

VN (x, i, π).

The optimal policy mapping is a mapping Π?
N : IRn ×N ⇒ ΠN

Π?
N := arg min

π∈ΠN

VN (x, i, π).
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Dynamic programming operators

For V ∈ fcns(IRn,N ) and control law µ : IRn ×N → IRm we define

TµV (x, i) := `(x, µ(x, i), i) + E [V (x(k + 1)) | Gk]
= `(x, µ(x, i), i) + E [V (x(k + 1)) | x(k) = x, θ(k) = i]

= `(x, µ(x, i), i) +
∑
j∈C (i)

pijV (fi(x, µ(x, i)), j)

This can be seen as a function H(x, i, µ, V ) for which a standard
monotonicity assumption holds (next slide).
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Monotonicity of H and Tµ

Fix x ∈ IRn, i ∈ N , a control law control law µ : IRn ×N → IRm the
following holds3

V ≤ V ′ ⇒ H(x, i, µ, V ) ≤ H(x, i, µ, V ′),

with V, V ′ ∈ fcns(IRn,N ). This readily implies that

V ≤ V ′ ⇒ Tµ(V ) ≤ Tµ(V ′).

3For two functions V1, V2 : X → ĪR (X is any set), the notation V1 ≤ V2 means
that for every x ∈ X it is V1(x) ≤ V2(x).
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Dynamic programming operators

Recall the definition of Tµ

TµV (x, i) = `(x, µ(x, i), i) +
∑
j∈C (i)

pijV (fi(x, µ(x, i)), j).

The DP operator is defined as

TV (x, i) := inf
u
`(x, u, i) +

∑
j∈C (i)

pijV (fi(x, u), j),

and the optimal control operator is

SV (x, i) := arg min
u

`(x, u, i) +
∑
j∈C (i)

pijV (fi(x, u), j).
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Tk properties

For every V ∈ fcns(IRn,N ), TkV ∈ fcns(IRn,N ) for all k ∈ N.

Proof.
Recall that

TV (x, i) = inf
u
H(x, i, u, V ).

Since H(0, i, 0, V ) = 0 for every V ∈ fcns(IRn,N ) and i ∈ N we have
TV (0, i) = 0. It is H(x, i, u, V ) ≥ 0 for all V and i, therefore
TV ∈ fcns(IRn,N ).
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Monotonicity of T

From the monotonicity property of H we can infer that for functions
V, V ′ ∈ fcns(IRn,N ) it is

V ≤ V ′ ⇒ T(V ) ≤ T(V ′).

Let Tk be the composition of T with itself k times. Then, by induction

V ≤ V ′ ⇒ Tk(V ) ≤ Tk(V ′).
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DP solution

Let π = {µi}ki=0 be a finite policy. We define Tµ0Tµ1 · · ·Tµk to be the
composition of those operators. Then, using the definitions:

VN (x, i, π) = (Tµ0 · · ·TµN )Vf (x, i).

And the value function is

V ?
N (x, i) = TNVf (x, i).

This last equation gives rise to the DP recursion.
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DP algorithm

We construct a sequence of functions {V ?
i }i=0,...,N with

V ?
0 = Vf

and

V ?
k+1 = TV ?

k ,

U?k+1 = SV ?
k .

This returns V ?
N and Π?

N ≡ U?N .

26 / 79



DP algorithm

If we replace T and S with their definitions we retrieve the typical DP
algorithm formulation

V ?
0 (x, i) = Vf (x, i),

and

V ?
k+1(x, i) = inf

u

`(x, u, i) +
∑
j∈C (i)

pijV
?
k (fi(x, u), j)

 ,

U?k+1(x, i) = arg min
u

`(x, u, i) +
∑
j∈C (i)

pijV
?
k (fi(x, u), j)

 .

27 / 79



DP algorithm

Assume that4

Vf ≥ TVf .

Then,
V ?
k = Tk−1Vf ≥ TkVf = V ?

k+1.

4Juxtapose with Assumption 2.12 (Basic stability assumption): J.B. Rawlings
and D.Q. Mayne, Model predictive control: stability and optimality, Nob Hill
Publishing, 2009.
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Normality assumptions

Hereafter, we assume that for every i ∈ N
1. `(·, ·, i) are level-bounded in u locally uniformly in x,

2. Vf (·, i) are lower-semicontinuous.
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Consequences of the assumptions

Because of the normality assumptions:

1. TkVf is lsc for all k,

2. domU?k = domV ?
k ,

3. When the infimum is finite, it is also attained,

4. Every U?k (·, i) is compact.
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III. Invariance notions for Markovian systems

Next slides...

1. Definition of a preimage operator

2. Definition of uniform control invariance (UCI)

3. Criteria for UCI

4. Link between DP and UCI

5. Maximal UCI and algorithmic determination
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Collections of sets

We introduce the following definition for families of sets

sets(IRn,N ) := {C = {Ci}i∈N | 0 ∈ Ci ⊆ IRn,∀i ∈ N}.
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The preimage operator

For C ∈ sets(IRn,N ) and i ∈ N we define

R(C, i) :=

{
x ∈ IRn

∣∣∣∣ ∃u ∈ IRm : (x, u) ∈ Yi,
fi(x, u) ∈

⋂
j∈C (i)Cj

}
We can write R(C, i) using the projection operator

R(C, i) := projx

{
(x, u) ∈ Yi

∣∣∣ fi(x, u) ∈
⋂
j∈C (i)Cj

}
Then define R(C) ∈ sets(IRn,N )

R(C) = {R(C, i)}i∈N .
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Understanding R(C, i)

Assume Yi = Xi × Ui, i.e., constraints are for the form x(k) ∈ Xθ(k) and
u(k) ∈ Uθ(k).

For C ∈ sets(IRn,N ) and i ∈ N , R(C, i) is the set of states x ∈ Xi for
which with some input u(x) ∈ Ui so that the next state x+ = Aix+Biu
is in all Cj with j ∈ Ci.
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Understanding R(C, i)

Let V ∈ fcns(IRn,N ) and domV = C (i.e., domV (·, i) = Ci and
C = {Ci}i∈N ). Then domTV = R(C).

Proof.
Fix i ∈ N :

domTV (·, i) = {x : ∃α ∈ IR, (x, α) ∈ epiTV (·, i)}
= {x : ∃α ∈ IR,∃u : (x, u, α) ∈ epiH(·, i, ·, V )}
= {x : ∃u : (x, u) ∈ domH(·, i, ·, V )}
= R(C, i).

Note: We used Prop. 1.18 in: R.T. Rockafellar and R.J.B Wets,
Variational Analysis, Springer, 2009.
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Properties of R

Recall that Xf := domVf = domV ?
0 . What is R(Xf )?

R(Xf , i) =

{
x ∈ IRn

∣∣∣∣∣ ∃u ∈ IRm : (x, u) ∈ Yi,
fi(x, u) ∈

⋂
j∈C (i)X

f
j

}

But, using that fact that Yi = dom `(·, ·, i), it is

R(Xf , i) = domV ?
1 (·, i),

and consequently
R(Xf ) = domV ?

1 .
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Properties of R

By induction, we can see that

Rk(Xf ) = domV ?
k .

and of course
RN (Xf ) = domV ?

N .
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Further Properties of R

Under the normality assumptions, it can be shown that domV ?
k = domU?k .

Rk(Xf ) = domV ?
k = domU?k︸ ︷︷ ︸

The minimum is
attained.

.
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Uniform control invariance

A C ∈ sets(IRn,N ) is called uniformly control invariant (UCI) for our
Markovian switching system if there exists a policy π ∈ Π such that

x(0) ∈ Cθ(0) ⇒ φ(k, x, θ(0), π, θ) ∈ Cθ(k),

for every admissible switching path θ ∈ A(θ(0)).
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Criterion for UCI

A C ∈ sets(IRn,N ) is UCI if and only if

C ⊆ R(C).

Proof.
Hint: Assume there is a x ∈ Ci with x /∈ R(C, j) for some j ∈ C (i) and
for all u such that (x, u) ∈ Yi which leads to contradiction (Exercise).
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DP and UCI

If Vf ≥ TVf , then for k ≥ 1: domV ?
k is UCI.

Proof.
Recall that C ∈ sets(IRn,N ) is UCI iff C ⊆ R(C). We know that
domV ?

k = Rk(Xf ) with Xf := domVf . Given that Vf ≥ TVf we have
V ?
k ≥ V ?

k+1, thus for k ≥ 1

V ?
k ≥ V ?

k+1 ⇒ domV ?
k ⊆ domV ?

k+1

⇒ Rk(Xf ) ⊆ Rk+1(Xf )

⇒ Rk(Xf ) ⊆ R(Rk(Xf ))

⇒ domV ?
k ⊆ R(domV ?

k )

so domV ?
k is UCI.
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Maximal UCI

Definition.
A UCI X? ∈ sets(IRn,N ) is called a maximal UCI family of sets if
X? ⊇ X for every X ∈ sets(IRn,N ) which is UCI.
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Maximal UCI

The maximal UCI family of sets X? = {X?
i }i∈N is given by

X?
i =

{
x

∣∣∣∣ ∃π ∈ Π : φ(k, x, i, π, θ) ∈ Xθ(k),

∀k ∈ N,∀θ ∈ A(i)

}
.

Proof.
The proof is left as an exercise.
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Determination of the maximal UCI

Assume that constraints are given in the form x(k) ∈ Xθ(k) and
u(k) ∈ Uθ(k). The following recursion converges to the maximal UCI:

X0 = X,

Xk+1 = R(Xk),

where X = {Xi}i∈N and notice that

Xk
i =

{
x

∣∣∣∣ ∃π ∈ Π : φ(k, x, i, π, θ) ∈ Xθ(k),

∀k ∈ N,∀θ ∈ Ak(i)

}
.

But, the algorithm must converge in finitely many steps to return the
maximal UCI...
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Determination of the maximal UCI

Using the procedure:

X0 = X,

Xk+1 = R(Xk),

Assume X is a polytope and the system is a MJLS.

+ We converge to the maximal UCI

− Termination: Xk = Xk−1. It may not converge in finite time (even
for MSS systems).

− It is computationally expensive to compute the minimal
representation of each Xk

− None of the iterates needs to be UCI.
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IV. Lyapunov stability analysis

Coming up...

1. Uniform positive invariance

2. Definitions: MSS and MSES

3. Uniform positive invariance

4. Lyapunov stability conditions
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Autonomous Markovian systems

Consider the Markovian switched system

x(k + 1) = fµθ(k)(x(k)):= fθ(k)(x(k), µ(x(k), θ(k))).

The solution of this system with x(0) = x, θ(0) = i and θ ∈ A(i) is given
by

x(k) = φ(k, x, i, θ).

We shall assume that the system state must satisfy x(k) ∈ Xθ(k).
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Uniform positive invariance

A C ∈ sets(IRn,N ) is uniformly positively invariant if there exists π ∈ Π
so that φ(k, x, i, θ) ∈ Cθ(k) whenever x(0) = x ∈ Cθ(0) for all θ ∈ A(i).

Now the preimage operator becomes

R(C, i) =

x ∈ Xi : fµi (x) ∈
⋂

j∈C (i)

Cj


Let R(C) = {R(C, i)}i∈N . Then X is UPI iff C ⊆ R(C).
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UPI determination

The maximal UPI set can be computed using the preimage iteration (same
as for UCI) which converges in finite steps if and only if the closed-loop
system is uniformly asymptotically stable.
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MSS for constrained systems

Stability makes sense only with respect to a UPI set!
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MSS for constrained systems

Let X ∈ sets(IRn,N ) be a uniformly positive invariant family of sets for
x(k + 1) = fµθ(k)(x(k)). The origin is called mean square stable if

E
[
‖φ(k, x, i, θ)‖2

]
→ 0, as k →∞,

for all x ∈ Xi and i ∈ N .
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MSES for constrained systems

Let X ∈ sets(IRn,N ) be a UPI for x(k + 1) = fµθ(k)(x(k)). The origin is
called mean square exponentially stable if there exist β > 1 and
η ∈ (0, 1)

E
[
‖φ(k, x, i, θ)‖2

]
≤ βζk‖x‖2,

for all x ∈ Xi and i ∈ N .
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Definition of LV

For V ∈ fcns(IRn,N ) define the operator

LV (x(k), θ(k)) := E [V (x(k + 1), θ(k + 1))− V (x(k), θ(k)) | Gk] .

It is easier to remember it as

LV (x, i) := E
[
V (x+, i+)− V (x, i) | (x, i) : given

]
.

This can be written as

LV (x(k), θ(k)) := E [V (x(k + 1), θ(k + 1)) | Gk]− V (x(k), θ(k))

=
∑
j∈C (i)

pijV (fµθ(k)(x(k)), θ(k))− V (x(k), θ(k)).
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Lyapunov theorem for MSS

If there is a V ∈ fcns(IRn,N ) and a γ > 0 so that

LV (x, i) ≤ −γ‖x‖2,

for all x ∈ Xi and i ∈ N , then the origin is MSS5.

5For details and proofs see: Patrinos et al., 2014.
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Lyapunov theorem for MSS

If there is a V ∈ fcns(IRn,N ) and a α, β, γ > 0 so that

LV (x, i) ≤ −γ‖x‖2,
α‖x‖2 ≤ V (x, i) ≤ β‖x‖2,

for all x ∈ Xi and i ∈ N , then the origin is MSES.
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* Supermartingale property

A L1(Ω,F ,P)-random process {ξk}k which is adapted to a filtration
{Fk}k is called a supermartingale if

E[ξk+1 | Fk] ≤ ξk, w.p. 1

for all k ∈ N, k ≥ 1.
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* Supermartingale property

The condition LV (x, i) ≤ −γ‖x‖2 implies that {V (xk, ik)}k is a
supermatringale:

LV (xk, ik) ≤ −γ‖xk‖2

⇔ E[V (xk+1, ik+1)− V (xk, ik) | Gk] ≤ −γ‖xk‖2

⇔ E[V (xk+1, ik+1) | Gk]− V (xk, ik) ≤ −γ‖xk‖2

⇒ E[V (xk+1, ik+1) | Gk] ≤ V (xk, ik)

∴ We can invoke Doob’s convergence theorem!
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* Doob’s convergence theorem

Let (Ω,F , {Fk}k∈N,P) be a filtered probability space and {Zk}k an
Fk-adapted supermartingale satisfying

sup
k∈N

E[|Zk|] <∞.

Then the limit Z∞ = limk→∞ Zk exists almost surely and E[Z∞] <∞.
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V. Stochastic MPC

1. The receding horizon control law

2. Stability conditions

3. Stabilising MPC for constrained MJLS
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Receding horizon control

The receding horizon control policy consists in solving the FHOC problem
and applying the first control action to the system, that is6

u(k) = µ?N (x(k), θ(k)),

where
µ?N (x, i) ∈ U?N (x, i).

The controlled system will then be

x(k + 1) = f
µ?N
θ(k)(x(k)).

6We will refer to this control law as the stochastic MPC control law.
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Stochastic MPC stability

Assume that Vf ∈ fcns(IRn,N ) is lsc and TVf ≤ Vf and there is an α > 0
s.t. `(x, u, i) ≥ α‖x‖2 for all i ∈ N , (x, u) ∈ Yi. Then the origin of the
MPC-controlled system is MSS in X? := domV ?

N .

Proof.
We will show that V ?

N is a Lyapunov function. We have
V ?
N ∈ fcns(IRn,N ). It is V ?

N = Tµ?N
VN−1, that is

V ?
N (x, i) = `(x, µ?N (x), i) +

∑
j∈C (i)

pijV
?
N−1(f

µ?N
i (x), j).

By definition, we have

LV ?
N (x, i) =

∑
j∈N

pijV
?
N (f

µ?N
i (x), j)− V ?

N (x, i)
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Stochastic MPC stability

Proof (cont’d).
Let us now plug V ?

N into LV ?
N .

LV ?
N (x, i) =

∑
j∈N

pijV
?
N (f

µ?N
i (x), j)− `(x, µ?N (x), i)

−
∑
j∈C (i)

pijV
?
N−1(f

µ?N
i (x), j)

But given that TVf ≤ Vf , we have V ?
N ≤ V ?

N−1, so

LV ?
N (x, i) ≤ −`(x, µ?N (x), i) ≤ −α‖x‖2,

which proves MSS.
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Examples of choosing Vf #0

A trivial choice is
Vf (x, i) = δ{0}(x),

but then domV ?
N shouldn’t be expected to be too large.
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Examples of choosing Vf #1

For MJLS, we can choose Vf to be

Vf (x, i) = x′Pix+ δ
Xf

i
(x),

where P = (Pi)i solves the CARE

Pi=A
′
iEi(P )Ai−AiEi(P )Bi(Ri+B

′
iEi(P )Bi)

−1B′iEi(P )Ai+Qi,

and Xf = {Xf
i }i∈N is the maximal uniformly pos. invariant set for the

closed-loop system with µ(x, i) = Fi(P )x.
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Examples of choosing Vf #2

For MJLS: Assume that ` is piecewise quadratic, i.e.,

`(x, u, i) = x′Qix+ u′Riu+ δYi(x, u).

If we require that Vf has the following form

Vf (x, i) = x′Pix+ δ
Xf

i
(x),

then for Vf ≥ TVf to hold it is necessary that

domVf ⊆ domTVf ⇔ Xf ⊆ R(Xf )

⇔ Xf is UCI

and...
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Examples of choosing Vf #2

for all x ∈ domVf (·, i)

Vf (x, i) ≥ TVf (x, i) := inf
u
`(x, u, i) +

∑
j∈C (i)

pijV (Aix+Biu, j).

This inequality will be satisfied if there is a control law u(x, i) = Kix s.t.

Vf (x, i) ≥ `(x,Kix, i) +
∑
j

pijVf ((Ai +BiKi)x, j)

= x′
[
Qi +K ′iRiKi + (Ai +BiKi)

′E(P )(Ai +BiKi)
]
x

+ δYi(x,Kix) +
∑
j∈C (i)

δ
Xf

j
((Ai +BiKi)x).
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Examples of choosing Vf #2

We can pick a UCI set Xf ∈ sets(IRn,N ), a control law u(x, i) = Kix,
and a PWQ stage cost `(x, u, i) = x′Qix+ u′Riu+ δYi(x, u) with
Qi = Q′i ≥ 0, Ri = R′i > 0, so that

(x,Kix) ∈ Yi, ∀x ∈ Xf
i , ∀i ∈ N ,

(Ai +BiKi)x ∈ Xf
j ,∀j ∈ C (i), ∀x ∈ Xf

i , ∀i ∈ N ,
Pi ≥ Qi +K ′iRiKi + (Ai +BiKi)

′E(P )(Ai +BiKi), ∀i ∈ N ,
Pi = P ′i > 0, ∀i ∈ N .

Then, the MPC-controlled system is MSS over X? = domV ?
N . The above

can be cast as an LMI (Exercise).
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Examples of choosing Vf #2

Notice that the first two requirements

(x,Kix) ∈ Yi, ∀x ∈ Xf
i , ∀i ∈ N ,

(Ai +BiKi)x ∈ Xf
j ,∀j ∈ C (i), ∀x ∈ Xf

i , ∀i ∈ N ,

imply that Xf is UPI for the closed-loop system

x(k + 1) = (Aθ(k) +Bθ(k)Kθ(k))x(k),

subject to the constraints

(x(k),Kθ(k)x(k)) ∈ Yθ(k).
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Ellipsoidal UCI sets

Assuming again that ` is PWQ and Vf is quadratic over Xf , we need to
compute a UCI set7. Choose

Xf
i = {x | x′Pix ≤ 1},

where Pi satisfy the inequalities on the previous slide. Under proper
conditions, this will be a UPI set for the closed-loop system

x(k + 1) = (Aθ(k) +Bθ(k)Kθ(k))x(k).

7We can of course compute the maximal UCI set using the preimage iteration, but
this may not converge and is often too cumbersome computationally especially in
high-dimensional spaces. We can also use Xf

i = {0}, but then domV ?
N becomes

too small.
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Ellipsoidal UCI sets

A sufficient condition for Xf to be UCI is

x′Pix ≤ 1⇒ x′(Ai +BiKi)
′Pj(Ai +BiKi)x ≤ 1

for all i ∈ N and j ∈ C (i). This can be cast as an LMI using the S-lemma
(Exercise). Ellipsoidal UCI sets are often easier to determine than
polytopic ones.
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MSES for stochastic MPC

Assume that Vf ∈ fcns(IRn,N ) is lsc and TVf ≤ Vf and there is an α > 0
s.t. `(x, u, i) ≥ α‖x‖2 for all i ∈ N , (x, u) ∈ Yi.

Additionally, assume that

1. 0 ∈ int domVf ,

2. each V ?
N (·, i) is continuous on XN

i := domVN (·, i) and

3. each XN
i is compact.

Then, the origin is MSES in X? for the MPC-controlled system.
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MSES-stabilising stochastic MPC

When applying a stochastic MPC to

1. a MJLS

2. with a PWQ stage cost (Qi = Q′i ≥ 0 and Ri = R′i > 0),

3. Vf (x, i) = x′Pix+ δ
Xf

i
(x); P is the solution of the CARE and

4. Xf is the maximal UPI of the closed-loop system with the control law
associated to the CARE,

then, the origin is MSES for the SMPC-controlled system.
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Samuelson’s macro-economic model

Samuelson’s multiplier-accelerator macroeconomic model is a MJLS8 with
modes:

I Normal

I Boom

I Slump

based on the economy’s marginal propensity to save.

The model’s state is related to the national income and the input
corresponds to the government expenditure.

8W.P. Blair and D.D. Sworder. Feedback control of a class of linear discrete sys-
tems with jump parameters and quadratic cost criteria. Int. J. Cont., 21(5):833–
841, 1975.
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Samuelson’s macro-economic model

Three modes with

A1 =

[
0 1
−2.5 3.2

]
, A2 =

[
0 1
−4.3 4.5

]
, A3 =

[
0 1

5.3 −5.2

]
and

Bi =

[
0
1

]
,

with transition matrix

P =

0.67 0.17 0.16
0.3 0.47 0.23
0.26 0.1 0.64


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Mode-dependent constraints:

Y1 = [−10, 10]2 × [−10, 10],

Y2 = [−8, 8]2 × [−10, 10],

Y3 = [−12, 12]2 × [−10, 10].

Mode-dependent quadratic stage cost:

Q1 =

[
3.6 −3.8
−3.8 4.87

]
, Q2 =

[
10 −3
−3 8

]
, Q3 =

[
5 −4.5
−4.5 5

]
,

and

R1 = 2.6, R2 = 1.165, and R3 = 1.111.

Prediction horizon N = 6.
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Samuelson’s macro-economic model

104 random simulations with i0 = 2.

76 / 79



VI. Conclusions
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Open research questions

1. Satisfaction of constraints in probability

2. Economic stochastic MPC

3. Efficient numerical algorithms for the solution of stochastic MPC
problems

4. Efficient methodologies for the computation of uniformly invariant
families of sets
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